
Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

243

IMPROVING WEB SERVER PERFORMANCE USING
TWO-TIERED WEB CACHING

1FAIRUZ S. MAHAD, 2WAN M.N. WAN-KADIR

Software Engineering Department, Faculty of Computer Science & Information Systems,

University Teknologi Malaysia

E-mail: 1fsafwan88@gmail.com , 2wnasir@cs.utm.my

ABSTRACT

The purpose of this study is to improve the web server performance. Bottlenecks such as network traffic
overload and congested web server has still yet to be solved due to the increasing of internet usage. Caching
is one of the popular and efficient solutions to reduce network latency. However, there is a need to study
the current caching technique and further optimize the result. Therefore, this study proposed a Two-Tiered
Caching System (2TCS). The 2TCS adapts a selective caching system concept which contains two tiers in
its caching architecture. The 2TCS is used to further increase the probability of achieving a cache hit on top
of utilizing the normal caching system. The proposed technique utilizes SQUID as its web cache server and
also Mozilla Firefox’s default caching system at the client side. A performance comparison of a normal
caching system against the implementation of the 2TCS is made using the IBM Rational Performance
Tester to prove the result.

Keywords: Web cache, Two-tiered caching, Web Server Performance, Software Engineering

1. INTRODUCTION

The web servers have been serving on the
World Wide Web for years. It ensures client’s
requests are responded as fast as possible.
However, the performance issue of a web server
still remains unsolved. Despite installing high-end
networking related hardware, it still remains
insufficient to accommodate the ever increasing of
bandwidth usage by users. Currently, performance
still caused bottlenecks in the network such as
congested networks which leads to the increase in
network latency thus resulting in the increased
average response delay among users. This states the
importance of measuring the throughput of a web
server[1].

Solving congested network problems by
installing state-of-the-art hardware or increasing the
bandwidth would only be a temporary solution. It is
almost impossible to accommodate the bandwidth
demand of users which tends to increase rapidly
over time. Therefore, solving congested networks
with upgrading hardware is not an efficient and
effective solution.

The term web server refers to software which
receives requests from clients, process and responds
them accordingly [2]. The performance of a web
server can be defined as a measurement to

determine the effectiveness of web servers in
responding to the client’s requests. On the other
hand, the degree of performance concerns with the
capability of a web server. There are many research
papers, journals and articles that address the
performance issues of a web server. Performance is
a vital issue among web servers. In order to ensure
an efficient web server, performance is essential
[3]. Other researches also state that the web server
performance is a vital matter especially for websites
that service a large amount of requests [4]. Due to
the low web server performance, users doubt the
reliability of the web application despite the useful
features it presents.

There are known solutions to solve issues
regarding the performance of a web server of which
popular ones are such as caching, load balancing
and memory compression. Among them, caching is
the most widely used technique which is also seen
as effective and efficient in increasing the web
server performance. Web cache is a technique
which stores copies of elements in a web page of
which could consists of images, scripts, video and
etc. These copies will be used to serve future
similar requests which prevent the requests from
travelling all the way to the origin server thus able
to save bandwidth while reducing the degree of
network congestion.

http://www.jatit.org/
mailto:1fsafwan88@gmail.com
mailto:2wnasir@cs.utm.my

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

244

This study focuses on improving the web server
performance by utilizing the existing cache system
available in Mozilla Firefox in conjunction with
SQUID, a web cache server. The study proposes a
web cache architecture which is able to further
increase the probability of requests being served at
the client-side rather than the origin server. The
performances of the existing cache system are
recorded using IBM Rational Performance Tester.
The recorded data will be plotted against the data
with the implementation of the proposed technique.

2. LITERATURE REVIEW

Web caching is common nowadays and many
researches have acknowledged its effectiveness in
reducing bandwidth usage. There are other
techniques which are basically load-balancing
based technique of which works by analyzing the
relationship’s dependency followed by adjusting
the weight among each part of the session to
dynamically manipulate the initiation of the session
[5] and also another by clustering two components
to allow sharing of information between
components [6]. Apart from load balancing, there
are also others such as main memory compression
which utilizes a reserved space of a physical
memory used to store compressed data allowing
accesses to the disk being mitigated for other
application to run [7]. There is also a technique
which focuses on detecting dead requests made by
users and eliminating them to avoid deadlock [8].
However, among all of these techniques, web
caching is seen to be the most efficient.

As mentioned, web caching is the process of
storing copies of web page elements to be used for
future requests. However, web cache also has its
downside. Storing saved data requires storage
space. Allocating a large amount of storage space
for caching would be inconvenient. Therefore, there
are numerous methods and algorithms that are
proposed by researches to eliminate chosen stored
cached data to give way to newer cache entries
while still providing a fast respond service.
Meanwhile some researches do not entirely delete
the cached data but creatively proposed methods to
manipulate them effectively.

A. Caching Dynamic Data

One of the factors that majorly reduce the
performance of a web server is the presence of
dynamic web pages. Unlike static web pages,
dynamic web pages really affect the web server’s

performance. It is impossible to avoid dynamic web
pages all at once as those are the frequently used
among most web sites nowadays compared to static
web pages. In their paper, caching dynamic data,
Iyengar and Challenger develops a cache
architecture which comprises of a cache manager
and several caches and application program. The
cache manager acts as a medium allowing
communication between one or more cache and the
application program. The application program will
communicate with the cache manager to either add
or delete data from the cache. As a result, the
performance boosted at least 58% in a worst case
scenario [9].

Figure 1. Cache Manager and Application

Communication Over Internet Sockets

(Iyengar and Challenger, 1997)

Figure 1. Cache Manager and Application
Communication Over Internet Sockets [9]
The technique developed by Iyengar and

Challenger proves to be able to improve the
performance of the web server. However, there are
still room for improvements. Their technique works
well only with dynamic data.

B. Delayed Caching

Daesung and Kim proposed a technique which
they termed delayed caching. Their delayed caching
technique is said to be able to improve the overall
system reliability [10]. The technique is
implemented on a SQUID server. The performance
of the SQUID server is measured using an open
source software known as the POLYGRAPH which
is especially used for testing cache server’s
performance.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

245

Figure 2. Delayed caching Algorithm [10]

The study proposed an algorithm which serves
requests in a unique way. The algorithm is created
so that SQUID does not cache any data when the
request rate is high instead the meta information of
the requested data is recorded for the meantime.
When the request rate goes back to normal, the
delayed cache will retrieve the data from the meta
information initially recorded. This is how the
delayed caching technique basically works.
However, certain users will experience certain
delays but in return, most users will benefit from
the proposed technique [10].

3. RESEARCH METHODOLOGY

A. First Stage Development

According to the Iyengar and Challenger, in
their paper, improving web server performance by
caching dynamic data, they develop a cache
architecture that consists of a cache manager [9].
The purpose of the cache manager that they develop
is to manage the storage of one or more caches. In
addition the application will interact with the cache
manager to either delete or add items in a cache.
Figure 3 below represents the cache architecture
that Iyengar and Challenger propose.

Figure 3. Dynamic caching Architecture [9]

The concept of the cache manager developed by
Iyengar and Challenger will be adapted by the
proposed technique of this paper. The Cache
Manager that will be adapted will still serve the
same purpose as Iyengar and Challenger’s Cache
Manager which is to manage one or more cache
storage, however, the proposed technique’s Cache
Manager will interact with only SQUID instead of
many applications. On top of that, the Cache
Manager will only allow adding cache items to the
one or many cache storage without able to delete it.
The one or many cache storage is referred to as the
client’s Firefox cache directory.

In Iyengar and Challenger‘s cache manager, the
cache manager concerns one or more cache
storages, it applies the same concept to the
proposed technique’s Cache Manager. In addition,
SQUID is used as a base for the Cache Manager to
perform its functions. SQUID also has its own
cache function which will be utilized by the Cache
Manager. On top of that, SQUID increases the
probability of acquiring a cache hit as SQUID
caches data of the entire client’s request passing
through. However, the focus of the proposed
technique is to evaluate the improvement of the
web server performance. Allowing only SQUID to
perform its function does not prove any effort on
further improving the web server performance with
respect to the proposed technique. The Cache
Manager has to work in conjunction with SQUID to
optimize the web server performance. In addition to
the applied concept, the Cache Manager is made up

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

246

of an algorithm to select the top thirty cache item
with the highest cache hit rate which will then be
pushed to the cache storage referred to as the
client’s Firefox cache directory. In this way, the
probability of responds to a request achieving a
cache hit will be increase dramatically. Figure 4
below demonstrates the improved cache manager.

Figure 4. Improved Cache Manager

B. Second Stage Development

Figure 5. Additional Cache Level

The improved cache manager offers a higher

probability in achieving a cache hit rate. However,
there is still room for improvements which could
further increase the probability of achieving a cache
hit rate. By simply adding another level of cache
which contains a pre-selected cached data
considering only the highest cache hit rate, the
probability of achieving a cache hit rate can be
further improved. Improving this probability also
means improving the web server performance
because it prevents the request to reach the origin
web server as much as possible which reduces the
usage of bandwidth and also the degree of network
congestion.

This additional level of cache will contain an
existing common caching system available at all
computers which is the web cache. The web cache
is referred to as the client’s Firefox cache directory.
A web cache is stored on the client’s computer
itself and Firefox itself will cache the data and
stores it in the web cache. This additional level is
generally the reusing of existing caching system to
maximize the effectiveness of the proposed
technique in this paper.

As mentioned earlier, this additional level of
cache contains cached data which are pre-selected
with only the highest cache hit rate. These pre-
selected cached data are actually fetched from the
Cache Manager. With the Cache Manager
providing the client’s Firefox cache directory with
selected cache items with high cache hit rate, it
increases the probability of acquiring a cache hit
over at the client side instead of having to travel to
the origin web server. This however describes the
communication between the two levels.

4. TWO-TIERED WEB CACHING

A. Overview

This study proposes a two-tiered caching system
or in short called the 2TCS. In brief, the two-tiered
caching system is made up of two tiers. It is termed
two-tiered due to the active correlation between
both tiers in performing the caching process. The
core tier lies within the second tier. It serves as the
major tier that manipulates and decides what to
cache in both tiers. The first tier receives
instructions from the second tier. In short, the first
tier is dependent on the second tier. The 2TCS
adapts the fusion of two concepts namely the proxy
server and the selective caching concept. The
similarities between the proxy server and the 2TCS
can be seen in the first few processes. The later
processes are where the selective caching concept
takes place. The 2TCS implements SQUID, a well-
known web cache server and also a Cache Manager
developed using Java. A cache item with a high
cache hit rate also means that the cache item is
popular as it is frequently requested by clients.

The 2TCS as mentioned consists of two tiers.
The first tier contains the clients in which this study
refers to as the web browser. The clients have their
own caching system which is embedded in their
system. For instance Mozilla Firefox and Internet
Explorer are popular web browsers which have
their own embedded caching system to provide a
faster response time to the users. The first tier

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

247

exploits the presence of the client’s caching system.
In this study, Mozilla Firefox is used and referred
to as the client’s web browser. The second tier
consists of the Cache Manager, SQUID and also the
Filtered Cache Data Folder which contains the
FCD.log. The Cache Manager is responsible to
utilize components available in SQUID to be able
to calculate and select the top thirty cache items
with the highest cache hit rate and forward the
information to the FCD.log while the selected
cached items will be forwarded and appended to the
client’s Firefox cache directory. Figure 6 illustrates
the two-tiered web caching architecture.

Figure 6. Two-Tiered Web Caching
Architecture

This explains briefly the two-tiered caching
technique. Whenever a client requests a web page,
the browser cache will be visited first. Given if
there is a cache hit, the response time is greatly
reduced as clients will receive the responds much
faster since the request is fulfilled at the client side.
Should the scenario depicts a cache miss, the
request will be forwarded to SQUID the web
server. If a cache hit is achieved, the response time
is still greatly reduced though it is not as fast as
compared to if the cache hit occurs at the Firefox
cache. On the other hand, should a cache miss still
occur, the request will be forwarded to the origin
web server. When the origin web server responds to
the request, the respond will travel through SQUID.
The cache manager will utilize the information
stored by SQUID throughout the request and
respond session of all clients and process the

information to retrieve the top thirty cache items
with the highest cache hit rate. In brief, a request
has to visit two cache locations before it reaches the
origin server should the requests still cannot be
fulfilled.

B. Cache Manager

The second tier is where the core process
performs and where the Cache Manager resides.
The Cache Manager is developed using Java. The
Cache Manager performs most of the core
operations throughout the 2TCS. The Cache
Manager is responsible for interacting with SQUID
by retrieving SQUID’s log files and compute the
retrieved data based on the algorithm developed.

The log files consist of the access log and the
store log. Both the log files will be fully utilized by
the Cache Manager. Generally, the Cache Manager
listens from the communication between all the
clients and SQUID and extracts both the access and
cache information. Based on this information, the
Cache Manager will determine the top thirty cache
item with the highest cache hit rate. Since SQUID
does not involve performing any statistic value, the
Cache Manager is developed to utilize the access
log information to be able to calculate the cache hit
rate of each cache item and translates all of those
data into percentage. Upon acquiring the
percentage, the top thirty cache item with the
highest cache hit rate can be selected. The selected
cache items data will then be stored in the FCD.log.
Once the FCD.log is filled with the selected cached
items, the Cache Manager will continue its
operation to locate the location of the selected
cached items. Utilizing SQUID’s store log, the
Cache Manager will read its format and extract the
location of all the selected top thirty cached items.
However, at certain times, not all selected cache
items can be found in SQUID’s default cache
folder. It is due to the fact that at certain times,
SQUID will cache an item and store it temporarily
in the memory and not the disk.

The Cache Manager is only able to locate the
location of the cached item which is stored on the
disk and not in the memory of the web server.
Despite acquiring the top thirty cached items with
the highest cache hit rate, occasionally not all thirty
cached items can be located. Once the Cache
Manager has located the cached item, it will be
copied and appended to Firefox cache directory. At
this point, the Firefox cache directory will contain
the client’s individual cached items cached by
Firefox as well as the Cache Manager’s selected
cached item based on SQUID. All clients whom

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

248

open a connection with SQUID will receive the
same set of selected cache items by the Cache
Manager. This way, it increases the probability of
acquiring more cache hit at the client side given
that the Cache Manager’s selected cache items are
of the top thirty cache items with the highest cache
hit rate based on all the client’s requests. The Cache
Manager will run continuously on the web server
side and keeps the FCD.log update with the top
thirty highest cached items. The figure below
illustrates the algorithm of the Cache Manager.
Figure 7 shows the algorithm of the cache manager
which is the core code for the two-tiered web
caching architecture.

Figure 7. Cache Manager Algorithm

C. Filtered Cache Data Folder (FCD)

The Filtered Cache Data Folder or in short the
FCD contains the FCD.log. The FCD.log contains
information such as the selected cache item’s URL
address, frequency and also its calculated
percentage. This information are produced and
stored by the Cache Manager. Based on the
FCD.log information, the Cache Manager will be
able to utilize it in conjunction with the store log
information to locate the location of the selected
cache items and copy and append it to the Client’s
Firefox cache directory. Figure 8 below illustrates a
screenshot of the FCD.log and its format.

Cached item -
http://pagead2.googlesyndication.com/pagead/osd/j
s
Frequency - 6
Percentage - 7.14

Figure 8. FCD.log Format

5. RESULTS AND DISCUSSION

A. Performance Evaluation
The performance evaluation is performed with

the IBM Rational Performance Tester software. The
evaluated data illustrates between the Firefox cache
directory without any pre-selected cache items
pushed by the Cache Manager and the Firefox
cache directory with the pre-selected cache items
pushed by the Cache Manager. All test results are
simulated with five virtual users, five iterations and
one iteration per minute for every test. The same
setting is used for all test sets. The IBM Rational
Performance Tester is used to simulate five virtual
users at once to run the recorded simulations and
also all sets are being iterated for five times with
one iteration per minute. The iterations are
configured because every run would not produce
the same results. Once all five iterations are
completed, IBM Rational Performance Tester will
compute the average response time of all five
iterations for each set. This allows a much more
accurate test results to be produced. On the overall,
there are four different set of tests. The tests are
divided into two categories, the static page and the
dynamic page. Each category consists of two other
test sets which are the ones with the pre-selected
cache items pushed by the Cache Manager and the
ones without the pre-selected items. The evaluation
does not specify the performance of the cache items
specifically but illustrates performance of the web
page as a whole. In most cases, a web page contains
more than one cacheable item to be cached which is
deemed sufficient in this evaluation. Figure 9
shows the websites performance evaluation.
Type Website Web Applicaiton

Medium Scale Large Scale
Web-
site

www.mudah.
my

www.mbocinemas.
com

www.elearning.utm.
my

Figure 9. Websites Performance Evaluation

Summary

B. Static Pages

All three websites are navigated to only their
home or index page without involving any further
navigation. Navigation to other pages is not

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

249

necessary since all three web pages have sufficient
items to be cached at their home or index page. The
evaluation criteria chosen is the average response
time taken for each home page of a website to be
successfully displayed. The unit of the average
response time is in milliseconds. The figure below
represents the average response time of each page
to be displayed for both with and without any pre-
selected cached items pushed by the Cache
Manager.

Figure 10. Summary of Static Pages

Figure 10 shows that unlike the rest, the MBO
cinemas website illustrates a very huge gap in
average response time compared to the other
website and web application, www.mudah.my and
the www.elearning.utm.my respectively. It could be
assumed that due to MBO cinemas containing
many images with large sizes could be the affecting
criteria for the average response time taken to load
the whole page. These however, realizes and proves
that by selecting and comparing different websites
containing different image sizes are able to show
the degree of effectiveness of the Two-Tiered Web
Caching technique under various types of websites
and web application. The graph also proves that
though an improvement can be seen under web
application category which is the
www.elearning.utm.my website, it does not have as
much effect for static pages. The degree of
improvement has almost the same level as
www.mudah.my which is of a website containing
medium scale images.

It could be concluded that with the pre-selected
cache items which consists of the top thirty highest
cache hit rate being pushed by the Cache Manager
to the Firefox default cache directory increases the
probability of acquiring a cache hit over at the
client level which directly reduces the number of
requests being sent to web server thus reducing the
network latency. However, the above findings
states for static pages only. The following section

concerns the dynamic page with the same
evaluating criteria.

C. Dynamic Pages

Figure 11 shows that there are drastic
improvements from all of the websites. In fact, the
degree of improvements is far better compared to
the test results obtained from the evaluation of the
static pages. Based on the test results from the
evaluations of the dynamic pages, with the
implementation of the 2TCS technique where the
Cache Manager pushes the pre-selected cache items
to the Firefox default cache directory illustrates an
improvement in the range of 55% to 83% are
achieved. This particularly means that the 2TCS
technique works better with websites containing
dynamic elements rather than static websites.

Figure 11. Summary of Dynamic Pages

Similar to the evaluations performed for the

static pages, the evaluations of the dynamic pages
are also performed in the day. Since networks are
bound to serve more clients’ request in the day than
in the night, it proves networks are much more
congested in the day rather than during the night.
This also states that performing evaluations during
the day serves to be the worst case scenario and
despite the congested networks, with the
implementation of the 2TCS, an astonishingly more
than 50% of improvement can still be achieved.
This also states that regardless of the time, the
2TCS is still able to achieve a considerable degree
of improvement.

The graph proves that despite the static or
dynamic page, the cache items which are being
pushed by the Cache Manager all the way to the
Firefox default cache directory affects the
performance of loading the pages. The average time
taken to load the pages is reduced greatly whenever
the pre-selected cache items are being pushed to the
Firefox default cache directory.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

250

6. CONCLUSION AND FUTURE WORK

The number of internet users has drastically
increases over time and has caused networks to be
congested thus bottlenecks occurs in networks.
Caching which is a common but effective and
efficient technique has been implemented as part of
the solution. The study proposed a Two-Tiered
Web Caching architecture which utilizes the default
caching system found in Mozilla Firefox, a web
browser and also SQUID, a web cache server. In
realizing the theory that by increasing the
probability of acquiring a cache hit as near as
possible to the client or better still at the client
itself, the performance of the web server can be
improved. In addition, the evaluation proves that
the Two-Tiered Web Caching technique has the
ability to improve the web server performance upon
implementation. The theory of the technique which
reduces the number of requests to the web server by
pushing selected cache item with high cache hit rate
over to the client level is proven. It can also be
concluded that a higher cache hit rate will result in
a lower usage of bandwidth thus reducing the
network latency and also improving the web server
performance.

In the future work with regards to this study,
further improvements can be made regarding the
algorithm of the Cache Manager. The algorithm in
selecting the cache items can be further optimize by
inducing more rules such as how to define popular
cache items. Factors that concerns are the number
of user determine by IP address along with the
frequency. On top of that, disk space can be reduce
should the algorithm intelligently pushed individual
sets of cache items based on each individual
browsing trend to their browser cache directory
instead of pushing the same set. Another
improvement could be the compatibility wise, it
would be better should the algorithm supports
chrome and Internet Explorer which increases the
efficiency of the technique.

ACKNOWLEDGEMENTS

The authors would like to express their
deepest gratitude to Universiti Teknologi Malaysia
(UTM) for their financial support under Research
University Grant Scheme (Vot number
Q.J130000.7128.01H13).

REFERENCES

[1] Darrel, I. (2001). Web server performance

metric. Dictionary of the Internet. Retrieved
on March 21, 2011 from
http://www.encyclopedia.com/doc/1O12Webs
erverperformancemetrc.html

[2] Kayne, R. (2011, March 16). what is a web

server?, Retrieved on February 20, 2011, from
http://www.wisegeek.com/what-is-a-web-
server.htm

[3] Ling, Y., Chen, S. and Lin, X. (2003).

Towards better performance measurement of
web servers. Proceedings of the 2003 joint
Conference of the Fourth International
Conference. 15-18 December. Singapore:
IEEE, 453-457.

[4] Iyengar, A., MacNair, E. and Nguyen, T.

(1997). An analysis of web server
performance. Proceedings of the 1997 IEEE
Global Telecommunications Conference. 3-8
November. Phoenix, AZ: IEEE, 1943-1947.

[5] Kurebayashi, R., Obana, K., Uematsu, H., and

Ishida, O. (2008). A Web Access Shaping
Method to Improve the Performance of
Congested Servers. Proceedings of the 2008
7th Asia Pacific Symposium on Information
and Telecommunication Technologies. 22-24
April. Bandos Island, Maldives: IEEE, 120-
125.

[6] Ho, L. K., Sit, H. Y., Ho, K. S. H., Leong. H.

V. and Luk, W. P. R.(2004). Improving Web
Server Performance by a Clustering-Based
Dynamic Load Balancing Algorithm.
Proceedings of the 18th International
Conference on Advanced Information
Networking and Application. 29-31 March.
Fukuoka, Japan: IEEE, 232-235.

[7] Beltran, V., Torres, J. and Ayguad´e, E.

(2008). Improving Web Server Performance
Through Main Memory Compression.
Proceedings of the 2008 14th IEEE
International Conference on Parallel and
Distributed Systems. 8-10 December.
Melbourne, Australia: IEEE, 303-310.

[8] Carter, R. and Cherkasova, L. (2003).

Detecting Timed-Out Client Requests for
Avoiding Livelock and Improving Web Server
Performance. Proceedings of the 5th IEEE

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 30th June 2013. Vol. 52 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

251

Symposium on Computers and
Communications. 3-6 July. Antibes-Juan Les
Pins, France: IEEE, 2-7.

[9] Iyengar, A. and Challenger, J. (1997).

Improving Web Server Performance by
Caching Dynamic Data. Proceedings of the
1997 USENIX Symposium on Internet
Technologies and Systems. 8-11 December.
Monterey, California: USENIX, 262-265.

[10] Daesung Lee; Kim, K.J. A Study on

Improving Web Cache Server Performance
Using Delayed Caching. Information Science
and Applications (ICISA), 2010 International
Conference, pages 1-5, April 2010.

http://www.jatit.org/

	1Fairuz S. Mahad, 2Wan M.N. Wan-Kadir

