
Journal of Theoretical and Applied Information Technology
 10th December 2013. Vol. 58 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

60

AN APPROACH FOR ASPECT-ORIENTED SKELETON CODE
GENERATION FROM REUSABLE ASPECT MODELS

ABID MEHMOOD, DAYANG N.A. JAWAWI
Department of Software Engineering, Faculty of Computing, Universiti Teknologi Malaysia (UTM)

Email: mabid4@live.utm.my, dayang@utm.my

ABSTRACT

Model-driven code generation has been a topic of interest for researchers owing to its several benefits
including the anticipated reduction in development effort and delivery time. It has taken a good deal of time
to produce techniques that generate executable code in object-oriented programming languages. Aspect-
oriented software development techniques, though expected to enhance software development in many
ways, still lack approaches that can deliver model-driven code into one of the aspect-oriented programming
languages such as AspectJ. In this paper, we present an approach for generation of aspect-oriented code
from Reusable Aspect Models. As first step towards the code generation, we have developed a formal and
semantically equivalent text-based representation of the aspect models using XML schema notation.
Further, we have proposed an approach that takes the XML representation of the aspect models to generate
aspect-oriented skeleton code. Currently, our approach can be used to obtain complete aspect structure,
interfaces, classes, constructors, fields and stubs of methods specified in the structural part of an aspect.

Keywords: Aspect-Oriented Modeling; Model-Driven Engineering; Aspect-Oriented Code Generation;
Reusable Aspect Models

1. INTRODUCTION

 Software development industry aims at

delivering high quality software products within
allocated time. However, with an almost ever
growing size and complexity of the product, the
goals of quality and on-time delivery tend to
become more and more difficult to achieve.
Therefore, to prevent them ending up running
over schedule, or even worse, relinquishing
quality in order to meet the deadlines, software
teams are always in need of techniques that can
help reducing delivery time, and also lend to
raising the quality of the product. In this context,
the visual modeling languages such as [1-4] are
particularly helpful as they provide modeling and
model-checking capabilities at the design level.
Nevertheless, since the end product has to be an
executable, modeling languages need to be
combined with automatic code generation
techniques in case their support was to be
extended to the implementation and maintenance
phases. This way, automatically (and correctly)
generated code enhances the benefits of high-
level design effort. For this reason, in past,
several studies have been conducted to generate
or help to generate executable code from high
level design models, see for example, Petri Nets
[5], Software Cost Reduction (SCR) [6], and
Cinderella SLIPPER [6], which use formal
notations. Also, some other research work (cf. [7-

10]) has used models developed using UML to
generate fully executable code. Similarly, for a
long time now, software developers have been
using commercial (e.g., IBM Rational Software
Architect [11], AjileJ StructureViews [12],
MagicDraw UML [13]) as well as open source
(e.g., ArgoUML, Eclipse UML2 Tools) CASE
tools in order to obtain code stubs.

 Aspect-oriented software development
techniques [14-16] essentially improve the
handing of crosscutting concerns, which
correspond to the functionality that cuts across
the basic modularization of a software system.
Crosscutting concerns usually originate from
non-functional requirements such as logging,
security, and persistence etc., and thus, if handled
using traditional software development
approaches (e.g. object-oriented development),
lead to problems associated with the phenomena
of scattering and tangling of behavior. These
phenomena are known as symptoms to show that
a concern has not been implemented in a well
modularized way. Specifically, the
implementation of a distinct concern will be
referred to as scattered if it is spread out over
more than one modules, and tangled if there exist
more than one modules to represent it. With the
use of aspect orientation at different levels of
development, these concerns (usually referred to
as aspect behavior) can be identified, separated
and encapsulated in a more explicit way. Benefits
of applying aspect orientation to software

http://www.jatit.org/
mailto:mabid4@live.utm.my
mailto:mabid4@live.utm.my
mailto:dayang@utm.my

Journal of Theoretical and Applied Information Technology
 10th December 2013. Vol. 58 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

61

development are usually associated with the
reusability, maintainability and extensibility of
the system, see for example [17-20]. Some other
studies have also reported several benefits of
aspect oriented techniques from other
perspectives of development, see for example
[17, 18, 21, 22]. Owing to this, the current study
has been conducted to elaborate a code
generation approach that specifically focuses on
generation of aspect-oriented code skeletons. For
this purpose, Reusable Aspect Models (RAM)
[23-26] notation has been used as the input
aspect-oriented modeling notation, whereas
AspectJ [27] is the target, which is essentially an
extension of Java [28] programming language.

This paper is organized in six sections.
Following this introduction, Section 2 provides a
background for this study by briefly describing
the RAM modeling approach, the use of XML
schemas in the context of code generation and
specifically this study. Section 3 provides a text-
based representation of the RAM models in the
form of XML schema. Section 4 is dedicated to
present the code generation approach. Section 5
describes some related work, and Section 6
concludes the paper while highlighting some
future directions for this research.

2. BACKGROUND: REUSABLE ASPECT
MODELS, XML AND XML SCHEMAS

2.1. Reusable Aspect Models (RAM)
RAM [23-26] is a multi-view modeling

approach that combines different modeling
approaches to model aspect-oriented class,
sequence and state diagrams into one approach.
This allows the use of the most appropriate
notation to model each view of a system. The
RAM’s notion that it views all of the concerns
that are potentially reusable in a single system or
a set of systems as aspects makes it different from
other aspect-oriented modeling approaches. This
essentially enhances, as well as supports, the
reusability at all levels of development. Different
views, i.e., structure, message, and state views, of
a reusable concern are encapsulated in a special
UML package, which represents the aspect
model. The model comprises of three
compartments. These compartments use a UML
class, state and sequence diagrams each
corresponding to the structural, state, and
message view of the modeled concern,
respectively.

Classes in the first compartment are not
required to be complete, and include methods and
attributes which are relevant only to the concern
that this aspect model represents. Such

incomplete classes are referred to as mandatory
instantiation parameters, and are composed with
other classes while instantiation of aspect to
obtain complete classes.

Second compartment relates to the state view,
which contains UML statechart diagrams to
describe the internal states of the class that are
relevant within the concern. A complete class in
structural view usually has a corresponding
standard statechart in state view, whereas an
incomplete class is represented here using an
aspectual state diagram, which contains a
pointcut and an advice. The pointcut part is used
to define the states and transitions that are
required in target state diagram, whereas the state
diagram that replaces the occurrence of pointcut
in the target state diagram is defined by the
advice part.

Third compartment defines a number of
sequence diagrams to describe the message
passing between objects of classes in the
structural view. Aspect models are used in target
model by means of either instantiation or binding
directives, which map the mandatory instantiation
parameters defined in different views of the
aspect model to elements in the target model.

2.2. XML and XML schemas
XML has emerged as a powerful and easy-to-

use standard to save and exchange data [29, 30].
It can easily be integrated with other related
standards and tools which allow accessing the
data stored in XML documents by means of
standard application programming interfaces
(APIs). XML represents the stored data using
XML elements consisting of a start tag, XML
attributes, content, and an end tag.

The structure and content of an XML
document is defined using an XML schema[31].
Just like the rules and features of a UML
diagram, XML schemas define a set of rules
describing elements and other markup objects to
be defined in an XML document. The standard to
define XML schemas is called XML Schema
Definition (XSD).

3. XML SCHEMA REPRESENTATION
OF RAM MODELS

As a first step to transform a graphical design

model (in our case the one developed using RAM
notation), a formal and semantically equivalent
text-based implementation of the same has to be
provided. This is essential in order to make the
visual model a computer-understandable entity.
For this purpose, XML and related standards
have traditionally been used by code generation

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th December 2013. Vol. 58 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

62

approaches to define text-based implementation
models, see for example [8, 32-34]. In this
section, a text-based representation of RAM
models in the form of XML schema is presented.
For this purpose, we first elaborate a set of
concepts used by a RAM model in a systematic
way, and later use the same elaborations to
propose the text-based representation. It has to be
emphasized here that, since in the current study,
our focus in on generation of skeletons only, our
discussion in this section and the following
section will be limited to structural part of RAM
models only.

3.1. Conceptual reference for RAM models
The concepts related to structure of a RAM

aspects can be divided into two distinct
categories, i.e., Core and Structure. We describe
both of these in the following.

3.1.1. Core
This category contains the details related to

the aspect as a whole. These details include the
information on mandatory instantiation
parameters, instantiations, and specification of
the classes as well as statechart diagrams defined
within the structural and state views, respectively.

3.1.2. Structure
Conceptually, the structure of an aspect is

defined by a set of classes and interfaces, and
relationships among them. In RAM, both types of
structural units, i.e., classes and interfaces share
some characteristics, and hence it would be
desired to capture those common concepts in a
general type, which can further be specialized to
represent each of these units. A class can either
be complete or incomplete, where the latter case
would require its composition with some other
class by means of binding or an export as a
mandatory instantiation parameter. Both
interfaces and classes may contain an arbitrary
number of functions, however, the specialized
types of constructors and methods can only be
contained by classes. It is to be noted here that we
make a conceptual distinction here between a
function and a method. Methods in our
representation refer to functions that contain
functionality and are commonly associated with a
statechart in the state view.

A class in RAM aspect may specify its
conceptual relationship with other classes, or
interfaces in the model. It may also stipulate the
multiplicity of the relationship on both sides.
Further, for association relationship, in which
roles of the participants on both sides are
relevant, we take care of the role name as well.

3.2. XML schema representation
The text-based implementation model, which

encapsulates the structural part of RAM models,
is presented in this section in the form of XML
schema. The schema is a generic representation
of RAM aspects, and thus, it can be used in
combination with any other related standard, such
as XMI. An overview of the specification of
mapping from structural view of RAM aspects to
XML schema is presented in Table 1, which is
mostly self-explanatory. For space reasons,
instead of describing the mapping of each of the
elements, we provide an overview of
implementation of the central concepts in the
following. We hope that readers familiar with
XML schemas will find the remaining
implementation rather straightforward.

An aspect serves as the main encapsulating
unit that eventually contains an arbitrary number
of classes and interfaces, their contents, and the
relationships among them. Moreover, it may also
define one or several of the elements as
mandatory instantiation parameters while
specifying their respective types. These global
properties of aspect can be implemented as
shown in Lines 1-14 in Figure 1. To enhance
reusability and to respect the principles of
modular design, we have made extensive use of
XML schema complex types in combination with
XML elements. Thus, for example, a class is
represented by an element of complex type
ClassType, which is an extension of the
generic type StructType, representing the
core features of a structure shared by classes and
interfaces. Classes, interfaces and their
corresponding details (fields, functions,
parameters, return types etc.) are implemented
within the structural view of the schema
representation (defined as StructuralView
element, see, e.g., Line 16-35 in Figure 1). As
described in Table 1, the field element defines
a number of attributes, which allow automatic
generation of some methods with predefined
semantics, e.g., if get and set attributes are set
to true for a particular field, then getter and
setter methods will be generated for that field
without the need of any further information.

Following the fields, constructors (in case of
class types only) and methods are defined, which
stem from a common complex type
FunctionType (see Line 43-50 in Figure 1).
This type provides a common base covering the
ID, name, and specification of parameters. The
type is directly used for the specification of
constructors, whereas it is extended by Method
type to include specification of an optional return

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th December 2013. Vol. 58 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

63

type and the statechart to which this method may
be associated, see Line 51-56 in Figure 1.

Once the classes and interfaces are fully
declared, we move to defining their relationships.
In our implementation, we deal with four
different kinds of relationships among structural
entities, i.e., inheritance, association, aggregation
and composition relationships. Inheritance is
implemented inside the ClassType by
introducing an element named parent, which
specifies the parent of this class. The
specification of each of remaining three
relationships is enclosed within a corresponding
element, as shown by Lines 38-40 in Figure 1.
We define a complex type
RelationshipType, which is on one hand
extended by AssociationType to define
associations by adding the details specific to
associations, e.g., name of the relationship

between two participating entities. On the other
hand, aggregation and composition relationships
are implemented fully using the instances of the
RelationshipType.

4. CODE GENERATION APPROACH

In this section, we present the code generation
approach, which essentially takes the textual
representation of RAM models, developed in the
form of XML using the schema proposed in the
previous section, and generates appropriate
aspects, classes, interfaces, relationship
implementations and skeletons of methods in
AspectJ. A high level algorithmic form of the
steps taken to manipulate the XML
representation, and obtaining code is shown in
Figure 2. We briefly describe the procedure in the
following subsections.

Table 1: Overview Of Mapping From RAM Model Elements To XML Schema

RAM entity to
be mapped

Mapped XML schema entity

Aspect XML element Aspect and a corresponding complex type AspectType declaration.

Class XML element ClassType within StructuralView element and a corresponding complex
type ClassType. ClassType extends the StructType (the generic structural type) using
XML extension. In case a class implements multiple interfaces, it will have a realizes
element corresponding to each of the interfaces.

Interface XML element InterfaceType within StructuralView element and a corresponding
complex type InterfaceType. This type also extends the generic StructType.

Field XML element named field. This element further defines a number of attributes, i.e., get,
set, increment, decrement, add, remove, and count, which allow direct generation of
methods corresponding to the traditional functionality provided by these methods.

Constructor XML element Constructor within ClassType element along with a complex type of the
same name. This complex type extends the generic FunctionType.

Method XML element operations within ClassType element along with a complex type named
Method, which extends the FunctionType by associating an optional value of return type
and statechartID to which this method is associated. However, if the return type is void,
we omit the element.

Mandatory
instantiation
parameter

XML element mandatoryInstParam declared within the Core element of AspectType. It
defines an attribute named type to specify different types of attributes such as class,
method, field etc.

Instantiation/
binding
directive

XML element Instantiations within the Core element of AspectType.

Relationship
(Inheritance)

XML element parent within ClassType element.

Relationship
(Association)

XML element association along with the declaration of a complex type AssociationType.

Relationship
(Aggregation,
Composition)

XML elements aggregation or composition as applicable, and declaration of a matching
type RelationshipType.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th December 2013. Vol. 58 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

64

<xs:complexType name="AspectType">
 <xs:sequence>
 <xs:element name="Global">
 <xs:complexType><xs:sequence>
 <xs:element name="ProjectName" type="xs:string"/>
 <xs:element name="AspectName" type="xs:string"/>
 <xs:element name="DependsOn" minOccurs="0"
maxOccurs="unbounded"><xs:complexType><xs:sequence>
 <xs:element name="DependsOnAspect" type="xs:string" maxOccurs="unbounded"/></xs:sequence>
 </xs:complexType></xs:element>
 <xs:element name="MandatoryInstParam" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType><xs:attribute name="MIPType"><xs:simpleType><xs:restriction base="xs:string">
 <xs:enumeration value="class"/><xs:enumeration value="method"/><xs:enumeration value="state"/>
 …..
 <xs:element name="Instantiations" minOccurs="0">
 <!-- ClassInst and StateInst are defined as elements within Instantiations here -->
 <xs:element name="StructuralView">
 <xs:complexType><xs:sequence>
 <xs:element name="ClassType" type="ClassType" maxOccurs="unbounded"/>
 <xs:element name="InterfaceType" type="InterfaceType" minOccurs="0" maxOccurs="unbounded"/>
 …..
 <!-- a base structural type StructType is defined here… -->
 <xs:complexContent>
 <xs:extension base="StructType"><xs:sequence>
 <xs:element name="constructor" type="Constructor" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="data"><xs:complexType><xs:sequence>
 <xs:element name="field" maxOccurs="unbounded"><xs:complexType><xs:sequence>
 <xs:element name="visibility"><xs:simpleType><xs:restriction base="xs:string">
 <xs:enumeration value="public"/><xs:enumeration value="protected"/><xs:enumeration value="private"/>
 …

<xs:element name="fieldName" type="xs:string"/>
 <xs:element name="fieldType" type="xs:string"/>
 <xs:element name="initVal" type="xs:string"/></xs:sequence>
 <xs:attribute name="get" type="xs:boolean"/><xs:attribute name="set" type="xs:boolean"/>
 …
 <!-- increment, decrement, add, remove, count attributes are defined in a similar way… -->
 ….
 <!-- different types of relationships -->
 <xs:element name="association" type="AssociationType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="aggregation" type="RelationshipType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="composition" type="RelationshipType" minOccurs="0" maxOccurs="unbounded"/>
 ….
<!-- any number of methods can exist here now… -->
<xs:complexType name="FunctionType">
 <xs:sequence>
 <xs:element name="funcID" type="xs:ID" minOccurs="0"/>
 <xs:element name="funcName" type="xs:string"/>
 <xs:element name="param" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType> <xs:attribute name="paramType"/></xs:complexType></xs:element>
 <xs:element name="isMIP" type="xs:boolean"/>
…..
<xs:complexType name="Method"><xs:complexContent>
 <xs:extension base="FunctionType"><xs:sequence>
 <xs:element name="stateChartID" type="xs:string" minOccurs="0"></xs:element>
 <xs:element name="returnType" minOccurs="0"><xs:complexType>
 <xs:attribute name="isSingular"/>

Figure 1: Excerpt of XML schema representation of a RAM aspect

4.1. Core implementation
The core implementation is primarily related

to managing the overall structure of the code
(e.g., adding it to an appropriate file structure)
and generating code for the global properties of
an aspect. The activities in this part typically
include creation of source files, creation of

packages and subpackages, designation of class
and interface types to their corresponding source
files, expression of the inheritance (extends)
relationships and instantiations. A summary of
the various elements used within the algorithm in
Figure 2 (mainly from line 1 to 11), which are

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th December 2013. Vol. 58 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

65

involved in the core implementation, is provided
in the following.

a) xGlobal: Set of all elements under
<Global> element in <Aspect>

b) xStructUnit: Refers to the
<StructUnit> element under xGlobal.
We use this element to directly obtain the
names of classes and interfaces in the
structural view to generate source code files.

c) sFile: Source code file with name
obtained from xStructUnit and which
has an extension .java.

d) xClassType: Refers to the
<ClassType> element within
xStructView.

e) structView: Set of all elements under
<StructuralView> element in
<Aspect>

f) structName: Refers to the name of
interface or class given in the
<structName> element of
xClassType.

g) xPackageDetails: Refers to
<ProjectName> and <AspectName>
elements in <Global>

h) sPackageDetails: Refers to details of
enclosing package represented in source
code. sPackageDetails is always
generated by appending the value of
<AspectName> to the value of
<ProjectName>.

i) sClass: The interface that is declared at
the highest level in the source file
corresponding to each class that exists in the
structural view of an aspect. This interface
serves as a marker interface, and the fields as
well as methods are declared into this
interface using inter-type declaration
mechanism of AspectJ.

j) sClassAspect: Refers to the aspect that
is declared at the highest level in the source
file corresponding to each class that exists in
the structural view of an aspect. The name of
this aspect is determined by the value of
xStructName and appending the word
Aspect to it. This aspect accompanies the
marker interface and is primarily used to add
data and functionality to the interface.

k) xParent: Refers to <ParentElement>
within xClassType.

l) declareExtParents: This refers to the
code intended to declare an inheritance
relationship between two entities (either
classes or interfaces) of the structural model.
First entity after the
declareExtParents is considered as
the child of the second entity. Here, it has to
be ensured that declareExtParents is
always used between two homogeneous
entities, i.e., classes and interfaces cannot be
mixed in a single statement. Actual
implementation is carried out by introducing
a declare parents statement of
AspectJ.

m) xRealizes: Refers to <realizes>
element within xClassType.

n) declareIntParents: This refers to the
code intended to declare that a class
implements an interface. The
implementing class precedes the
implemented interface in the statement.

o) xInterfaceType: Refers to the
<InterfaceType> element within
xStructView.

p) sInterface: The interface that is
declared at the highest level in the source file
corresponding to each interface existing in
the structural view of an aspect. This is
implemented as a standard interface, rather
than a marker one, and includes all the
method signatures provided in the aspect’s
design.

4.2. Classes and interfaces implementation
Our approach provides implementation for all

the classes and interfaces given in the aspect
design. Part of this implementation has been
covered in the previous section, wherein we
designated distinct files to each entity, introduced
packages, and declared hierarchy. So far as the
representation of a class and interface at code
level are concerned, a class is implemented by
using a combination of an interface and an
associated aspect, which introduces fields and
methods into the interface with the help of inter-
type declaration mechanism of AspectJ (see lines
6-17 in Figure 2). An interface, on the other hand,
is implemented using a standard Java interface
(see lines 18-24 in Figure 2). In order to take the
implementation further, we need to implement
fields, constructors, methods, relationships, and
instantiations/bindings. In the following, a section
has been dedicated to implementation of each of
these elements.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th December 2013. Vol. 58 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

66

4.3. Fields implementation
In this section, we describe different elements

of algorithm in Figure 2 (see lines 12-13), which
are related to implementation of our approach
with regards to fields given in classes of an
aspect.

a) xField: Refers to <field> element,
which further defines sub-elements to hold
all details needed to declare a field for a
class.

b) xData: Refers to the <data> element
within the xClassType. This element
exists only once in each class and hosts all
the fields for this xClassType.

c) sField: Refers to a field declared in the
source code of the class by means of inter-
type declaration mechanism of the AspectJ
language. Field in source field is declared by
generating different pieces from values of
four sub-elements of xField and joining
them using space character into one
statement, followed by a semicolon. This is
described in the following.

Visibility: It is determined by the value of
optional element <visibility>. If no
value is provided for this element, we
assume it to be private. This gives us the
first piece to be used in the field declaration.

Field type: It refers to the data type of the
field to be declared and is determined by the
<fieldType> element. Field type is
appended after visibility.

Field name: It is determined by the value of
<fieldName> element. This name is
appended after the field type. It is to be noted
here that, since we are using inter-type
declaration here, the field name is
constructed by combining the name of the
interface into which this field is to be
introduced (i.e. xStructName) and the
field name. Therefore, for example, if the
field name is firstField and it is be
introduced into an interface named First,
the final field name will be
First.firstField.

foreach xStructUnit xGlobal

generate sFile of name xStructUnit

foreach xClassType structView
within sFile of name xClassType.structName

transform xPackageDetails into sPackageDetails
generate sClass, sClassAspect from name structName
within sClassAspect

if xParent ≠ NULL
add declareExtParents between sClass, xParent

if xRealizes ≠ NULL
add declareIntParents between sClass, xParent

foreach xField xData
transform xField into sField

foreach xConstructor xOperations
transform xConstructor into sConstructor

foreach xMethod xOperations
 transform xMethod into sMethod

foreach xInterfaceType structView
within sFile of name xInterfaceType.structName

transform xPackageDetails into sPackageDetails
generate sInterface from name structName
within sInterface

foreach xFunction xOperations
 transform xFunction into sFunction

foreach xClassInst xInstantiations
within sFile of name xClassType.structName

declareExtParents between xMappedTo, xMappedFrom

Figure 2: Skeleton Code Generation Algorithm

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th December 2013. Vol. 58 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

67

Initial value: It refers to an optional initial
value to be set for this field and is
determined by the value of <initVal>
element. If provided, an assignment operator
is appended to the field name followed by
the initial value to be assigned.

4.4. Constructors implementation
This section describes different elements of

algorithm in Figure 2 (see lines 14-15), which are
related to implementation of our approach with
regards to constructors given in classes of an
aspect. Since, in our approach, classes are not
implemented as plain Java classes, but rather as
interfaces along with aspects (because we need to
allow their merging with other classes as a result
of instantiation and binding directives),
constructors implementation needs a special
strategy. They cannot be implemented in standard
way used for classes, as we are dealing with
interfaces here, and an interface is not allowed to
have constructors in Java. Therefore, to allow
instantiation of our class (which is implemented
as a public interface here), we define a private
static class within the aspect corresponding to
implementation of our class. Next, we declare a
getInstance() method which returns
instances of the classes. This is further explained
in the following.

Further, it has to be noted here that we follow
the Java language principles in dealing with
standard constructors. Thus, if an explicit
constructor has been provided in the textual
implementation of a class, we automatically
generate the default constructor also.

a) xConstructor: Refers to a <function
xsi:type=”constructor”> element
within xOperations, which is used to
declare constructors of the class.

b) sConstructor: Refers to a constructor
defined in the source file of a class within the
aspect corresponding to the class. As we
stated above, a constructor is implemented
by first generating a private static
class within the aspect corresponding to the
actual class in aspect model. The name of
this class is obtained by appending the word
Class to the class name. Within this
private class, a method with name
getInstance is declared for each
constructor declared in the textual
implementation of class in RAM aspect.
Different getInstance methods may
differ in the number and type of input
parameters in the way they have been
specified in the model. Further details on

generating return type, handling of
parameters, adding a return statement are
provided in the following section wherein we
discuss the same for methods.

4.5. Methods implementation
This section describes different elements of

algorithm in Figure 2 (see lines 16-17 and 23-24),
which are related to implementation of our
approach with regards to methods given in
classes and interfaces within an aspect.

a) xOperations: Refers to the
<operations> element within the
xClassType. This element exists only
once in a class and contains the whole set of
methods and constructors of the class.

b) sMethod: It refers to a method declared in
the source file of interface by using the inter-
type declaration. This method is constructed
with the help of various pieces of
information from the textual representation,
and joining them into one unit using space
characters. This is described in the following.

Visibility: It is determined by the value of
optional element <visibility>. If no
value is provided for this element, we
assume it to be public. This gives us the
first piece to be used in the method
declaration.

Return type: It refers to the return type of the
method to be declared and is determined by
the optional <returnType> element. If no
value is provided, we assume the return type
to be void. The value of return type is
appended to visibility. In case a return type is
provided (and is not void), we have to add
a corresponding return statement at the end
of the method. The handling of “return
statement” is described in the following.

Method name: It is determined by the value
of <funcName> element. The method
name is appended after the return type. It is
to be noted here that, since we are using
inter-type declaration here, the method name
is constructed by combining the name of the
interface into which this method is to be
introduced (i.e. xStructName) and the
method name. Therefore, for example, if the
method name is myMethod and it is be
introduced into an interface named First,
the final method name will be
First.myMethod, followed by a pair of
parenthesis. The method name is appended
to return type.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th December 2013. Vol. 58 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

68

Parameters: Parameters are determined by
any number of occurrences of the <param>
element. They are constructed by combining
the parameter type, which is determined by
the paramType attribute and the parameter
name. If more than one parameters are
found, they are separated by commas. Final
string of parameters is added between the
pair of parentheses added at the end of
method name described above. Following
the parameters, a pair of method delimiters,
i.e., braces are added.

Return statement: In case a method’s return
type is declared to be non-void, a return
statement is added inside the body of the
method immediately before the end brace. In
order to return a value, first a variable of the
return type is declared inside the method
body. The actual statement is constructed by
starting with the keyword “return”,
followed by the name of declared variable,
further followed by a semicolon.

c) xFunction: Refers to the <function>
sub-element of <operations> element
within the xInterfaceType. This
element is repeated for each method defined
in the interface.

d) sFunction: Here, we try to distinguish
method declarations of interfaces from those
of classes that contain an implementation.
sFunction refers to the source code
generated for methods that exist in
interfaces. sFunction is different from
sMethod described above in that: (1) it is
declared within an interface directly, rather
than within the aspect corresponding to a
marker interfaces, (2) it does not include any
implementation, and thus it only specifies a
return type, name, and parameters.

4.6. Relationships implementation
In this section, our approach with regards to

implementation of relationships among different
entities in the structural view of a RAM aspect is
described. At a higher level, in structural view of
a model, relationships may correspond to class
level and/or instance level. In our approach, class
level relationships, i.e., inheritance and
realization are declared within the body of
StructType and thus implicitly belong to both
ClassType and InterfaceType
declarations. Specifically, as given in section 4.1,
inheritance and realization relationships are
present in the textual model in the form of
xParent and xRealizes. Their
implementation is carried out by means of

introducing a declare parents statement
within the file corresponding to target class or
interface, see declareExtParents and
declareIntParents in section 4.1.

As far as instance-level relationships, i.e.,
association, aggregation and composition are
concerned, they are implemented by introducing
statements for instantiating objects of the
participating entities on the target side. It is no
more than declaration of fields of the appropriate
type on the target side of relationship. The
process for declaring fields of a certain type has
already been discussed in detail in section 4.3.

4.7. Instantiations/ bindings implementation
The implementation of instantiation and

binding directives is intended to add code that
would allow composition of classes with other
classes of the model at execution time. In our
approach, both types of these directives are
implemented by declaring an inheritance
relationship using declare parents statement.
Specifically, an instantiation is implemented by
having the instantiating entity extend the
instantiated entity. Similarly, in case of binding,
an extends relationship is defined to make the
mapped-to entity inherit from the mapped-from
entity. Since the definition of inheritance
relationship has been discussed in detail in
section 4.1 and 4.6, we have not reproduced it
here.

A summary of the various elements used
within the algorithm in Figure 2 (line 25 to 27),
which are involved in the implementation of
instantiations and bindings, is provided in the
following.

a) xInstantiations: Refers to the
<Instantiations> element within
xGlobal. This element appears only once
in the schema representation of an aspect and
hosts all the class and state instantiations.

b) xClassInst: Refers to the
<ClassInst> sub-element of
xInstantiations. This element is
repeated for each class instantiation in the
model, and it defines instantiations in the
form of a pair of from and to elements.

c) xMappedTo: Refers to the
<CMappedFrom> element within
xClassInst. This element contains the
name of class from which a mapping has
been done.

d) xMappedFrom: Refers to the
<CMappedTo> element within

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th December 2013. Vol. 58 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

69

xClassInst. This element contains the
name of class onto which a mapping has
been defined.

5. RELATED WORK

As far as its objective is concerned, the work
presented in this paper is closely related to other
aspect-oriented code generation work such as the
approaches of Bennet et al. [33], Hecht et al. [35],
and Groher and Schulze [36]. Also, this work is
related, though widely, to the previous work on
Reusable Aspect Models by Kramer and Kienzle
[37]. In this section, we provide a description of
this related work.

Bennet et al. [33] have proposed an approach
for aspect-oriented skeleton code generation to
complement Formal Design Analysis Framework
(FDAF) [38]. FDAF is an aspect-oriented
architectural design framework that supports the
analysis and design of non-functional
requirements. It works at the architectural design
layer. The code generation approach uses a
graph-based transformation mechanism to
transform aspect models into code. In contrast,
our work is based on RAM models, which work
at the detailed design layer and are capable to
model any reusable functionality (not only non-
functional requirements) as an aspect. Owing to
this, and the point that it is based on a mature
aspect-oriented modeling notation, our approach
may lead to an integration of aspect orientation
and model-driven engineering [39-41].

 Hecht et al. [35] generate code from
Theme/UML [42, 43] models using a template-
based approach that manipulates the model using
XSLT transformations. Template-based
approaches put several constraints on the modeler
since they need a good deal of implementation
detail at modeling level. Unlike our work, they
have not provided a standard text-based
representation of the model that can possibly be
used by any transformation mechanism and be
integrated into existing code generation tools.
Moreover, the use of XSLT in this scenario,
instead of customized XML-to-code mechanisms
has been reported to have certain limitations, see
[30]. Groher and Schulze [36] have also used the
mapping algorithm of Theme/UML but to
directly manipulate the model in order to obtain
code. They have not provided much detail on
their technique of handling transformation from
model to code. The direct manipulation technique
may eventually become extremely difficult to
handle when it comes to integration of behavioral
models. Moreover, they opted against the use of

XMI, which could allow a standard textual
representation of the graphical model.

Kramer and Kienzle [37] have proposed an
approach for mapping RAM models to aspect-
oriented code. However, their work is limited to
the conceptual mapping only, they have not
provided any details as regards the code
generation from visual models of RAM.

6. CONCLUSION AND FUTURE WORK

Model-driven code generation can support the

software development by reducing the coding
effort, and consequently the delivery time.
Several existing studies in the literature focus on
obtaining executable object-oriented code from
design models. However, studies on aspect-
oriented software development associate many
benefits of the approach with directly
transforming aspect models into code of aspect-
oriented programming languages. In this context,
the current paper proposes an approach to
generate skeleton code from aspect models
developed using the Reusable Aspect Models
(RAM) approach.

As first step towards code generation, we
have provided a formal, text-based representation
of RAM models. The code generation approach
takes this text-based representation as input and
generates the structural code including the
implementation of packages, classes, interfaces,
constructors, fields, and method stubs.

We believe that the text-based representation
of RAM models using XML schema presented in
this paper can be used, the way it is, to extend
this work to incorporate code generation from
behavioral diagrams such as state and sequence
diagrams, which are both supported by RAM
models. This can essentially lead to fully
executable behavioral code generation in aspect-
oriented paradigm.

REFERENCES:

[1] O. Group, "OMG Unified Modeling

Language (OMG UML), Infrastructure,
V2.1.2," 2007.

[2] G. Booch, Object-Oriented Analysis and
Design with Applications (2nd Edition):
Addison-Wesley Professional, 1993.

[3] J. Rumbaugh, M. Blaha, W. Premerlani, F.
Eddy, and W. Lorenson, Object-Oriented
Modeling and Design: {Prentice Hall, Inc.},
1991.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th December 2013. Vol. 58 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

70

[4] I. Jacobson, Object-Oriented Software
Engineering: A Use Case Driven Approach:
{Addison-Wesley Professional}, 1992.

[5] S. Philippi, "Automatic code generation from
high-level Petri-Nets for model driven
systems engineering," Journal of Systems
and Software, vol. 79, pp. 1444-1455, 2006.

[6] Y. Rauchwerger, F. Kristoffersen, and Y.
Lahav, "Cinderella SLIPPER: An SDL to C-
Code Generator," in SDL 2005: Model
Driven. vol. 3530, A. Prinz, R. Reed, and J.
Reed, Eds., ed: Springer Berlin / Heidelberg,
2005, pp. 1159-1165.

[7] A. Stavrou and G. A. Papadopoulos,
"Automatic Generation of Executable Code
from Software Architecture Models," in
Information Systems Development, ed:
Springer US, 2009, pp. 447-458.

[8] R. Pilitowski and A. Dereziñska, "Code
Generation and Execution Framework for
UML 2.0 Classes and State Machines," in
Innovations and Advanced Techniques in
Computer and Information Sciences and
Engineering, T. Sobh, Ed., ed: Springer
Netherlands, 2007, pp. 421-427.

[9] F. Chauvel and J.-M. Jézéquel, "Code
Generation from UML Models with
Semantic Variation Points," in Model
Driven Engineering Languages and
Systems. vol. 3713, L. Briand and C.
Williams, Eds., ed: Springer Berlin /
Heidelberg, 2005, pp. 54-68.

[10] I. A. Niaz and J. Tanaka, "An Object-
Oriented Approach to Generate Java Code
from UML Statecharts," International
Journal of Computer & Information Science,
vol. 6, 2005.

[11] D. Leroux, M. Nally, and K. Hussey,
"Rational Software Architect: A tool for
domain-specific modeling," IBM Systems
Journal, vol. 45, pp. 555-568, 2006.

[12] AjileJ, "AjileJ
StructureViews www.ajilej.com," ed, 2011.

[13] NoMagic, "MagicDraw UML,"
ed: www.magicdraw.com/, 2011.

[14] A. Rashid, A. Moreira, J. Araujo, P.
Clements, E. Baniassad, and B.
Tekinerdogan. (2006, Early aspects: Aspect-
oriented requirements engineering and
architecture design.

[15] T. Elrad, O. Aldawud, and A. Bader,
"Aspect-Oriented Modeling: Bridging the
Gap between Implementation and Design "
in Generative Programming and Component
Engineering. vol. 2487, D. Batory, C.

Consel, and W. Taha, Eds., ed: Springer
Berlin / Heidelberg, 2002, pp. 189-201.

[16] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda, C. Lopes, J.-M. Loingtier, and J.
Irwin, "Aspect-oriented programming," in
ECOOP'97 — Object-Oriented
Programming. vol. 1241, M. Aksit and S.
Matsuoka, Eds., ed: Springer Berlin /
Heidelberg, 1997, pp. 220-242.

[17] J. Hannemann and G. Kiczales, "Design
pattern implementation in Java and aspectJ,"
SIGPLAN Not., vol. 37, pp. 161-173, 2002.

[18] A. Garcia, C. Sant'Anna, E. Figueiredo, U.
Kulesza, C. Lucena, and A. v. Staa,
"Modularizing design patterns with aspects:
a quantitative study," presented at the
Proceedings of the 4th international
conference on Aspect-oriented software
development, Chicago, Illinois, 2005.

[19] A. Hovsepyan, R. Scandariato, S. V.
Baelen, Y. Berbers, and W. Joosen, "From
aspect-oriented models to aspect-oriented
code?: the maintenance perspective,"
presented at the Proceedings of the 9th
International Conference on Aspect-
Oriented Software Development, Rennes
and Saint-Malo, France, 2010.

[20] W. Harrison, H. Ossher, and P. Tarr,
"Asymmetrically vs. symmetrically
organized paradigms for software
composition," 2002.

[21] L. Fuentes and P. Sánchez, "Execution of
Aspect Oriented UML Models," in Model
Driven Architecture- Foundations and
Applications. vol. 4530, D. Akehurst, R.
Vogel, and R. Paige, Eds., ed: Springer
Berlin / Heidelberg, 2007, pp. 83-98.

[22] N. Cacho, C. Sant'Anna, E. Figueiredo, A.
Garcia, T. Batista, and C. Lucena,
"Composing design patterns: a scalability
study of aspect-oriented programming,"
presented at the Proceedings of the 5th
international conference on Aspect-oriented
software development, Bonn, Germany,
2006.

[23] J. Kienzle, W. Al Abed, F. Fleurey, J.-M.
Jézéquel, and J. Klein, "Aspect-Oriented
Design with Reusable Aspect Models," in
Transactions on Aspect-Oriented Software
Development VII. vol. 6210, S. Katz, M.
Mezini, and J. Kienzle, Eds., ed: Springer
Berlin / Heidelberg, 2010, pp. 272-320.

[24] J. Kienzle, W. A. Abed, and J. Klein,
"Aspect-oriented multi-view modeling,"
presented at the Proceedings of the 8th

http://www.jatit.org/
http://www.ajilej.com,/
http://www.magicdraw.com/

Journal of Theoretical and Applied Information Technology
 10th December 2013. Vol. 58 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

71

ACM international conference on Aspect-
oriented software development,
Charlottesville, Virginia, USA, 2009.

[25] W. A. Abed and J. Kienzle, "Information
Hiding and Aspect-Oriented Modeling," in
Proceedings of the 14th Aspect-Oriented
Modeling Workshop, Denver, CO, USA,
2009, pp. 1–6.

[26] J. Klein and J. Kienzle, "Reusable Aspect
Models," presented at the 11th Workshop on
Aspect-Oriented Modeling, Nashville, TN,
USA, 2007.

[27] G. Kiczales, E. Hilsdale, J. Hugunin, M.
Kersten, J. Palm, and W. G. Griswold, "An
Overview of AspectJ," presented at the
Proceedings of the 15th European
Conference on Object-Oriented
Programming, 2001.

[28] J. Gosling, B. Joy, G. Steele, and G. Bracha,
The Java Language Specification, Third
Edition: Addison-Wesley Professional,
2005.

[29] L. M. Garhol, Definitive Xml Application
Development: Prentice Hall Ptr, 2002.

[30] WWWC, "Extensible Markup Language
(XML) 1.0 (fourth edition)," ed: World
Wide World Consortium. Available
at: http://www.w3.org/TR/xml/, August
2006 [Online].

[31] E. Van der Vlist, XML Schema: O'Reilly,
2003.

[32] B. Lamancha, P. Reales, M. Polo, and D.
Caivano, "Model-Driven Test Code
Generation," in Evaluation of Novel
Approaches to Software Engineering. vol.
275, L. Maciaszek and K. Zhang, Eds., ed:
Springer Berlin Heidelberg, 2013, pp. 155-
168.

[33] J. Bennett, K. Cooper, and L. Dai, "Aspect-
oriented model-driven skeleton code
generation: A graph-based transformation
approach," Science of Computer
Programming, vol. 75, pp. 689-725, 2010.

[34] D. Kundu, D. Samanta, and R. Mall,
"Automatic code generation from unified
modelling language sequence diagrams,"
Software, IET, vol. 7, pp. 12-28, 2013.

[35] M. V. Hecht, E. K. Piveta, M. S. Pimenta,
and R. T. Price, "Aspect-oriented Code
Generation," presented at the XX Brazilian
Conference on Software Engineering, 2005.

[36] I. Groher and S. Schulze, "Generating
aspect code from UML models," in The
Third International Workshop on Aspect-
Oriented Modeling, 2003.

[37] M. Kramer and J. Kienzle, "Mapping
Aspect-Oriented Models to Aspect-Oriented
Code," in Models in Software Engineering.
vol. 6627, J. Dingel and A. Solberg, Eds.,
ed: Springer Berlin / Heidelberg, 2011, pp.
125-139.

[38] L. Dai, "Formal Design Analysis
Framework: An Aspect-Oriented
Architectural Framework," University of
Texas at Dallas, Ph.D Dissertation, 2005.

[39] A. Mehmood and D. N. A. Jawawi,
"Aspect-Oriented Code Generation for
Integration of Aspect Orientation and
Model-Driven Engineering," International
Journal of Software Engineering and Its
Applications, vol. 7, pp. 207-218, 2013.

[40] A. Mehmood and D. N. A. Jawawi, "A
systematic map of integration of aspect
orientation and model-driven engineering,"
in Open Source Systems and Technologies
(ICOSST), 2012 International Conference
on, Lahore, Pakistan, 2012, pp. 1-6.

[41] T. Cottenier, A. v. d. Berg, and T. Elrad,
"Motorola WEAVR: Aspect Orientation and
Model-Driven Engineering," Journal of
Object Technology, vol. 6, pp. 51–88, 2007.

[42] S. Clarke and E. Baniassad, Aspect-
Oriented Analysis and Design: The Theme
Approach: Addison Wesley Object
Technology, 2005.

[43] E. Baniassad and S. Clarke, "Theme: an
approach for aspect-oriented analysis and
design," in Software Engineering, 2004.
ICSE 2004. Proceedings. 26th International
Conference on, 2004, pp. 158-167.

http://www.jatit.org/
http://www.w3.org/TR/xml/

	ABID MEHMOOD, DAYANG N.A. JAWAWI
	2.1. Reusable Aspect Models (RAM)
	2.2. XML and XML schemas
	3.1. Conceptual reference for RAM models

	3.1.1. Core
	3.1.2. Structure
	3.2. XML schema representation

	Table 1: Overview Of Mapping From RAM Model Elements To XML Schema
	4.1. Core implementation
	4.2. Classes and interfaces implementation
	4.3. Fields implementation
	4.4. Constructors implementation
	4.5. Methods implementation
	4.6. Relationships implementation
	4.7. Instantiations/ bindings implementation

