A.Rassam, Murad and Zainal, Anazida and Maarof, Mohd. Aizaini (2013) An adaptive and efficient dimension reduction model for multivariate wireless sensor networks applications. Applied Soft Computing, 13 (4). pp. 1978-1996. ISSN 1568-4946
Full text not available from this repository.
Official URL: http://dx.doi.org/10.1016/j.asoc.2012.11.041
Abstract
Wireless sensor networks (WSNs) applications are growing rapidly in various fields such as environmental monitoring, health care management, and industry control. However, WSN's are characterized by constrained resources especially; energy which shortens their lifespan. One of the most important factors that cause a rapid drain of energy is radio communication of multivariate data between nodes and base station. Besides, the dynamic changes of environmental variables pose a need for an adaptive solution that cope with these changes over the time. In this paper, a new adaptive and efficient dimension reduction model (APCADR) is proposed for hierarchical sensor networks based on the candid covariance-free incremental PCA (CCIPCA). The performance of the model is evaluated using three real sensor networks datasets collected at Intel Berkeley Research Lab (IBRL), Great St. Bernard (GSB) area, and Lausanne Urban Canopy Experiments (LUCE). Experimental results show 33.33% and 50% reduction of multivariate data in dynamic and static environments, respectively. Results also show that 97-99% of original data is successfully approximated at cluster heads in both environment types. A comparison with the multivariate linear regression model (MLR) and simple linear regression model (SLR) shows the advantage of the proposed model in terms of efficiency, approximation accuracy, and adaptability with dynamic environmental changes
Item Type: | Article |
---|---|
Uncontrolled Keywords: | candid covariance-free incremental, dimension reduction, multivariate data analysis, principal component analysis, wireless sensor networks |
Subjects: | Q Science > QA Mathematics > QA76 Computer software |
Divisions: | Computing |
ID Code: | 49541 |
Deposited By: | Siti Nor Hashidah Zakaria |
Deposited On: | 02 Dec 2015 02:08 |
Last Modified: | 14 Oct 2018 08:22 |
Repository Staff Only: item control page