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The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. 
This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution 
found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better 
fitness than the best solution at the objective function optimised by that swarm, yielding poor solutions for the multiobjective 
optimisation problems. Thus, an improved Vector Evaluated Particle Swarm Optimisation algorithm is introduced by incorporating 
the nondominated solutions as the guidance for a swarm rather than using the best solution from another swarm. In this paper, the 
performance of improved Vector Evaluated Particle Swarm Optimisation algorithm is investigated using performance measures 
such as the number of nondominated solutions found, the generational distance, the spread, and the hypervolume. The results 
suggest that the improved Vector Evaluated Particle Swarm Optimisation algorithm has impressive performance compared with 
the conventional Vector Evaluated Particle Swarm Optimisation algorithm.

1. Introduction

In multiobjective optimisation (MOO) problems, multiple 
objective functions are solved simultaneously by either m in­
imising or maximising the fitness of the functions. These 
multiple objective functions usually conflict with each other. 
Therefore, the solution to an MOO problem is a set of 
multiple tradeoffs, or nondominated solutions, rather than a 
single solution.

The Vector Evaluated Particle Swarm Optimisation 
(VEPSO) [1] algorithm introduced by Parsopoulos and Vra- 
hatis has been used to solve various MOO problems, such 
as the design of radiometer array antennas [2], the design 
of supersonic ejectors for hydrogen fuel cells [3], the design 
of composite structures [4 ], the design of steady-state per­
formance for power systems [5], and the design of multiple 
machine-scheduling systems [6]. In the VEPSO algorithm,

one swarm of particles optimises an objective function using 
guidance from the best solution found by another swarm.

The nondominated solutions found during the optimi­
sation are usually preferred for effective guidance [7]. As 
an example, the multiobjective PSO (MOPSO) algorithm 
[8, 9] divides all nondominated solutions into several groups 
based on their locations in the objective space. Then, one 
of the nondominated solutions is randomly selected from 
the group that has the fewest solutions to be used as the 
particle guide. Furthermore, the nondominated sorting PSO 
(NSPSO) algorithm [10] uses the primary mechanism of 
nondominated sorting genetic algorithm-II [11], in which 
one nondominated solution is randomly selected to be used 
as the guide for the particles based on the niche count 
and nearest-neighbour density estimator. In addition, the 
optimised MOPSO (OMOPSO) algorithm [12] by Margarita 
Reyes-Sierra and Carlos Coello Coello uses the crowding
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distance mechanism for binary tournaments to select one of 
the nondominated solutions as the guide for each particle. 
Abido [13] uses two nondominated solutions, a local set and 
a global set, to optimise the problem. Each particle is guided 
by the nondominated solution that has smallest distance 
between the particle and both nondominated solution sets.

The conventional VEPSO algorithm solves an MOO 
problem by improving the solutions in a swarm under the 
guidance of the best solution with respect to a single objec­
tive, found by another swarm. However, the nondominated 
solution which has better fitness with respect to the other 
objectives may exist, but it was not used to guide the particles 
in other swarm. The nondominated solutions are always equal 
or better solutions compared with the best solution used in 
conventional VEPSO. The superiority of the nondominated 
solutions motivates the use of nondominated solutions as 
particle guides for each swarm in improving the VEPSO 
algorithm. Thus, in this study, the guidance of a swarm is 
selected by the nondominated solution which has best fitness 
with respect to a single objective function, optimised by the 
other swarm.

The paper is organized as follows. In Section 2, we explain 
some information on MOO problem. Then, in Section 3, 
we explain the particle swarm optimisation (PSO), the 
conventional VEPSO, and the improved VEPSO algorithms. 
In the next section, we demonstrate the simulation exper­
iment which includes several performance measures and 
benchmark test problem, before we discuss the results. Lastly, 
we present the conclusion and include some suggestion for 
future work.

2. Multiobjective Optimisation

Consider a minimisation of a multiobjective problem: 

minimise the fitness function,

F  (x) = { f m (£) e R M, m = 1,2

subject to g j  (x) < 0, j  = 1 ,2 , . . . ,  /,

hk (x) = 0, fc =  1 ,2 , . . . ,  K,

(1)

where x  = [xn e R N, n = 1 ,2 ,. . . , N ]  is the N-
dimensional vector of decision variables that represent the 
possible solutions, M  is the number of objectives, f m e R M 
is the objective function, and {g j, hk] e R  are the inequality 
and equality constraint functions, respectively.

In explaining the concept of Pareto optimality, consider

two vectors {Fa, Xfc] e R M. F a dominates F b (denote as F a <

~?) if and only if f am < f m for m = 1 ,2 , . . . ,  M  and f m < f hm

a t  least once. The dominance relations F a < F h and F a < 
F c for a two-objective problem are indicated by the labelled

circles in Figure 1. Hence, a vector of decision variables i  
is a nondominated solution if and only if there is no other

solution x h such that F (x i ) < F (x h ). The nondominated

f i

o

-q f

fl

Q  Dominated solution 
^  Nondominated solution

Figure 1: Dominance relation for two objectives problem.

solution is also known as the Pareto optimal solution. The set 
of nondominated solutions of an MOO problem is known as 
the Pareto Optimal set, P .  The set of objective vectors with 
respect to P  is known as the Pareto Front, P F  = {F (x) e 
R m  | x  e P } .  The P F  for a two-objective problem is 
illustrated by the black circles in Figure 1.

The goal of an MOO algorithm is to find as many non­
dominated solutions as possible according to the objective 
functions and constraints. The Pareto front corresponding 
to the nondominated set should be as close to and well 
distributed over the true Pareto front as possible. However, 
it is possible to have different solutions that map to the same 
fitness value in objective space.

3. Particle Swarm Optimisation

3.1. Original Particle Swarm Optimisation Algorithm. Based 
on the social behaviour of birds flocking and fish school­
ing, a population-based stochastic optimisation algorithm 
named Particle Swarm Optimisation (PSO) was introduced 
by Kennedy et al. [14, 15]. The PSO algorithm contains 
individuals referred to as particles that encode the possible 
solutions to the optimisation problem using their positions. 
These particles explore the defined search space to look for 
solutions that better satisfy the objective function of the 
optimised problem. Each particle collaborates with the others 
during the search process by comparing its current position 
with the best position that it and the other particles in the 
swarm have found [16].

Figure 2 shows the flow chart of the PSO algorithm. 
For the PSO algorithm, consider the following m inim isa­
tion problem: there are 7-particles flying around in an N- 
dimensional search space, where their positions, (i =



The Scientific World Journal 3

Figure 2: The PSO algorithm.

1, 2, . . .  ,1; n = 1, 2, . . .  , N) ,  represent the possible solu­
tions. Initially, all particles are randomly positioned in the 
search space and assigned random velocities, v'n(t). Then,

the objective fitness, F '(t), for each particle is evaluated by 
calculating the objective functions with respect to p '(t). Next, 
each particle’s best position, pBest'(t), is initialised to its 
current position. Meanwhile, the best among all pBest'(t) is 
set as the swarm’s best position, gBest(t), as specified in (2), 
where S is the swarm of particles:

gBest = {pBest' e S | f  (pB est')  = min f ( y p B e s t ' e s ) } .
(2)

Next, the algorithm iterates until the stopping condition 
is met; that is, either the maximum number of iterations is 
exceeded or the minimum error is attained. In each iteration, 
each particle’s velocity and position are updated using (3) and 
(4 ), respectively,

V'n (t + 1 ) = X  [MVn (t) + Clr l (p Best'n ~ P'n (t))

+c2r2 (gB estn -  p'n (£ )) ] ,

Pn ( t + 1 ) = P n  (t) + Vn (t +

(3)

(4)

where \  is the constriction factor and w is the inertia weight. 
c1 and c2 are the cognitive and social coefficients, respectively. 
Meanwhile, r1 and r2 are both random values between zero

and one. After the velocity and position are updated, the F '(t) 
for each particle is evaluated again. Later, pBest'(t) is updated 
with the more optimal between the new position of the ith 
particle or pBest'(t). Then, the gBest(t) is updated with the 
most optimal pBest'(t) among all the particles, as given in
(2). Finally, when the stopping condition is met, gBest(t)

represents the optimum solution found for the problem 
optimised using this algorithm.

3.2. Vector Evaluated Particle Swarm Optimisation Algorithm. 
Parsopoulos and Vrahatis [1] introduced the VEPSO algo­
rithm, which was inspired by the multiswarm concept of 
the VEGA algorithm [17]. In this multiswarm concept, each 
objective function is optimised by a swarm of particles using 
the gBest(t) from another swarm. The gBest(t) for the mth 
swarm is the pBest'(t) that has most optimal fitness with 
respect to the mth objective, among all pBest'(t) from the mth 
swarm, as given below:

gB estm = {pBest' e Sm | f m (pB est')

= min f m (y pB est1 e Sm) } .
(5)

Generally, the PSO and VEPSO algorithms have similar 
process flows, except that all processes are repeated for 
M  swarms when optimising problems with M  objective 
functions. Because each swarm optimises using gBest(t) 
from another swarm, in VEPSO, the velocity is updated using 
(6). The velocity equation for particles in the mth swarm 
updates gB estk(t), where k is given in (7):

Vn { (t + 1 ) = X [m ™ (t ) + q r i  ( pBest™' -  p™ (t ))

+ C2r2 ( 0 Bestk„ ~ p 7  (0 ) ] ,

k =
M , m =  1, 
m -  1, otherwise.

(6)

(7)

In addition to the difference in the velocity equation, all 
nondominated solutions found during the optimisation are 
stored in an archive each time after the objective functions are 
evaluated. To ensure that the archive contains nondominated

solutions only, the fitness F '(t) of each particle is compared, 
based on the Pareto optimality criterion, to those of all 
particles before it is compared to the nondominated solutions 
in the archive. All nondominated solutions in the archive 
represent possible solutions to the MOO problem.

3.3. The Improved VEPSO Algorithm. In conventional VEP­
SO, each particle of a swarm is updated by the gBest(t) from 
the other swarm that is optimal with respect to the objective 
function optimised by the other swarm. Consider a two- 
objective optimisation problem as an example; the gBest(t) 
of the first swarm is only updated when a newly generated 
solution has better fitness with respect to the first objective, 
as specified in (5). Thus, gBest(t) is not updated even if the 
new solution, nondominated solution, has equal fitness with 
respect to the first objective and better fitness with respect to 
the second objective. Hence, as in Figure 3(a), each particle 
from the second swarm moves under the guidance of the 
gBest (t) but not the better, nondominated solutions.

However, this limitation can be overcome by updating 
gBest(t) with a new solution, nondominated solution, that
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/ \  Particle in swarm 1 
O  Particle in swarm 2 
0  Nondominated solution

(a)

Figure 3: Particles guided by (a) the best solution

/ \  Particle in swarm 1 
Q  Particle in swarm 2 
0  Nondominated solution

(b)

the other swarm and (b) a nondominated solution.

has equal fitness with respect to the optimised objective func­
tion and better fitness with respect to the other objective. This 
improved VEPSO algorithm is represented in Figure 3(b), 
where gB est1 (t) is now a nondominated solution that is best 
with respect to the first objective function. Thus, each particle 
from the second swarm will be guided by its own pB est2i(t) 
and gB est1 (t), which is a nondominated solution, with the 
hope that the particle will converge toward the Pareto front 
faster.

In the improved VEPSO algorithm, the generality of 
conventional VEPSO is not lost; so the gBest(t) of a swarm is 
the best nondominated solution with respect to the objective 
function optimised by the swarm. Therefore, the gBest(t) of 
the mth swarm is given as following:

gB estm = { X e  P  | f m (X) =  min f m (VX e P ) } ,  (8)

where X  is a nondominated solution and P  is the set of 
nondominated solutions in the archive. For a two-objective- 
function problem, the particles from the second swarm are 
guided by the nondominated solution that is best with respect 
to the first objective function. Meanwhile, the particles of the 
first swarm are guided by the nondominated solution that is 
optimal with respect to the second objective function. Thus, 
this improved algorithm is called Vector Evaluated Particle 
Swarm Optimisation incorporate nondominated solutions 
(VEPSOnds).

In addition, the PSO algorithm has the natural limita­
tion that particles tend to become stuck in locally optimal 
solutions [18, 19]. Therefore, this improved VEPSO algorithm 
also includes the polynomial mutation mechanism from non­
dominated sorting genetic algorithm-II [11]. The polynomial 
mutation mechanism modifies the particle position with a

certain probability such that the particle can mutate out from 
the locally optimal solution and continue the search for a 
globally optimal solution. In this work, one of every ten 
particles is mutated in the improved VEPSO algorithm.

4. Experiment

4.1. Performance Measure. In order to analyse the perfor­
mance of the VEPSOml algorithm, several quantitative per­
formance m esasures are used. Since MOO problems have dif­
ferent features, for example multilocal optima solution, which 
could trap the particles from obtaining more nondominated 
solutions; hence, the number of solution (NS) measure is 
used to quantify the total number of nondominated solutions 
found at the end of the computation. Besides, for example 
when the particles one trapped in a local optima solution, 
the obtained Pareto front will not be converged close to the 
true Pareto front which means that the best possible solutions 
were not found yet. Thus, the generational distance (GD)
[20] is used and defined as the average Euclidean distance 
between the obtained Pareto front, P F 0, and the true Pareto 
front, P F t, using (9). A smaller GD value indicates better 
performance:

A well-converged Pareto front does not guarantee to have 
good diversity of nondominated solutions along the Pareto
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front. Therefore, the third performance metric used is the 
spread (SP) [11], which is used to measure the extent of 
the distribution of the P F 0 along the P F t. Equations (10), 
are used to measure SP, and smaller values indicate better 
performance:

sp  d f  + dl ' \dq - d \ ,

d f  + di + -  l ) d

V IIPFJ-1 ,
-  L q=i dq (10)

| | P F 0| | - r

<1,  = - f t " ) 1 + - f t 1) 2.

where d f  is the Euclidean distance between the first extreme 
members in P F 0 and P F t and di is the Euclidean distance 
between the last extreme members in P F 0 and P F t. In some 
cases, the obtained Pareto fronts could be converged well to 
the true Pareto front but it has poor diversity performance. 
Hence, it is not fair by comparing different algorithms with 
the GD and SP measures only Finally, the hypervolume (HV)
[21] is used to measure the total space or area enclosed by the 
P F 0 and a reference point, R, which is a vector constructed 
from the worst objective value from the P F t. Equation (11) 
is used to evaluate the HV value. The total area for HV is the 
enclosed area in Figure 4 and is calculated using (11). Larger 
HV values represent better performance:

IIPFJ
HV = X  v , , (11)

q=1

where vq is the space or area between R and the diagonal 
corner of qth solution of P F 0.

4.2. Test Problems. Five of the benchmark test problems 
from ZDT [22] are used to evaluate the performance of 
the algorithm. Because this study focused on continuous 
search space problems, the ZDT5 problem is not used as 
it is for the evaluation of binary problems. All bench­
m ark problems are set up using the parameter values rec­
ommended in the paper [22]. For evaluating the perfor­
mance measure, the true Pareto front for each problem is 
obtained from the standard database generated by the jMetal 
(http://jmetal.sourceforge.net/problems.html).

4.3. Evaluation o f VEPSO Algorithms. Because the VEP- 
SOnds algorithm includes polynomial mutation, the experi­
ment in this work should analyse aversion of VEPSOnds that 
does not include polynomial mutation. This implementation 
exists because the polynomial mutation affects the algorithm’s 
performance, and it is necessary to determine whether 
the change in performance is due to the use of multiple 
nondominated solutions or the polynomial mutation. Thus, 
in this work, the VEPSOnds algorithm without mutation is 
denoted as VEPSOnds1 and the VEPSOnds algorithm with 
mutation is denoted as VEPSOnds2.

O  Reference point 
^  Nondominated solution

Figure 4: Hypervolume measure with area covered by the nondom­
inated solutions and a reference point.

In this experiment, the total number of particles is fixed 
to 100 and divided equally among all swarms. The archive 
size is controlled by removing the nondominated solutions 
with the smallest crowding distance [11]. In addition, the 
maximum iteration and archive size are set to 250 and 100, 
respectively. During the computation, the inertia weight is 
linearly degraded from 1.0 to 0.4. The cognitive and social 
constants are both random values between 1.5 and 2.5. 
Moreover, the distribution index is set to 0.5 for the mutation 
operation. Each test problem is simulated for 100 runs to 
enable statistical analysis.

The performance of each algorithm tested on the ZDT1 
problem is presented in Table 1. For the average NS m ea­
sure, the number of nondominated solutions found by both 
improved VEPSO algorithms was significantly greater for 
conventional VEPSO. For the GD measure, VEPSOnds1 
demonstrated significant improvement compared with the 
conventional VEPSO algorithm. Meanwhile, the VEPSOnds2 
algorithm exhibited an extremely large improvement com­
pared with both conventional VEPSO and VEPSOnds1. 
Similarly, the SP measures for both improved VEPSO algo­
rithms also indicated significant improvement compared 
with conventional VEPSO. As expected, the HV performance 
also improved dramaticallywhen the problem was optimised 
using multiple nondominated solutions as particle guides.

For better visual comparison, the Pareto fronts with the 
best GD value returned for each test problem are shown 
in Figure 5 through Figure 9. Figure 5 shows the plot of 
nondominated solutions with the best GD measure returned 
for the ZDT1 problem. The nondominated solutions obtained 
by VEPSO are clearly located very far away from the true 
Pareto front, which leads to a large GD value. Moreover, 
the obtained solutions are unevenly distributed around the

http://jmetal.sourceforge.net/problems.html
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Figure 5: Plot of nondominated solutions returned by each algorithm for the ZDT1 test problem.

objective space, which yields a large SP value. In contrast, the 
VEPSOnds1 and VEPSOnds2 algorithms generated nondom ­
inated solutions close to and evenly distributed over the true 
the Pareto front. Therefore, the GD and SP values for both 
improved VEPSO algorithms are significantly smaller than

those for conventional VEPSO. However, the VEPSOnds2 
has better distribution of nondominated solutions than the 
VEPSOnds1.

Table 2 presents the performance measures for all algo­
rithms tested on the ZDT2 problem. Again, both the
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VEPSO
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o VEPSOnds1
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Figure 6: Plot of nondominated solutions returned by each algorithm for the ZDT2 test problem.

7

improved VEPSO algorithms dramatically improved the 
ability to obtain a large number of solutions compared 
with VEPSO, especially VPESOnds2. In addition to the NS 
performance, the GD and SP performances were also dra­
matically improved because the nondominated solutions 
used in the improved VEPSO algorithms are better guides

compared with the best solution among each particle, which 
is used in conventional VEPSO. However, in SP measure, 
the VEPSOnds1 shows negligible improvement, whereas 
the VEPSOnds2 shows distinguished improvement over the 
conventional VEPSO. The conventional VEPSO algorithm 
was unable to yield a meaningful HV because the obtained
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Figure 7: Plot of nondominated solutions returned by each algorithm for the ZDT3 test problem.

1

nondominated solutions were far worse than the true Pareto 
front. However, the VEPSOnds1 and VEPSOnds2 algorithms 
yielded good HV values.

Figure 6 shows the nondominated solutions with the best 
GD measure returned for the ZDT2 problem. The poor 
performance of conventional VEPSO is visible because the 
nondominated solutions found are very distant from the true 
Pareto front and distributed unevenly in the objective space.

Conversely, the VEPSOnds1 algorithm was able to obtain a 
nondominated solution that is located on the true Pareto 
front. However, there is only one nondominated solution, 
which increases the SP value of this algorithm. In contrast, 
the VEPSOnds2 algorithm successfullyfound nondominated 
solutions very close to the true Pareto front, and the non­
dominated solutions found are distributed evenly over the 
true Pareto front. Thus, the polynomial mutation preventing
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Figure 8: Plot of nondominated solutions returned by each algorithm for the ZDT4 test problem.

the particles from converging too early is an important 
mechanism in improving the diversity performance of the 
algorithm.

Table 3 presents the performance measures of all algo­
rithms tested for the ZDT3 problem. Regarding the NS

measure, both the improved VEPSO algorithms success­
fully obtained a large number of nondominated solutions. 
Moreover, both improved VEPSO algorithms yielded great 
improvement compared with the conventional VEPSO in 
terms of convergence. However, the SP value of the solutions
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VEPSOnds2
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Figure 9: Plot of nondominated solutions returned by each algorithm for the ZDT6 test problem.

obtained by both improved VEPSO was degraded in this 
test. Even with the degradation in the diversity performance 
of both improved VEPSO, they still hold the performance 
advantages with their superior convergence improvement. 
Besides, both improved VEPSO performances are better as

their HV value was also improved when the particles in the 
algorithm used additional guides during the optimisation.

Figure 7 shows the nondominated solutions with the 
best GD measure returned for ZDT3 problem. Unavoidably, 
the nondominated solutions obtained by the conventional
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Figure 10: Plots of the performance metrics for various numbers of particles. (a) Number of solutions. (b) Generational distance. (c) Spread. 
(d) Hypervolume.

VEPSO algorithm are scattered far from the true Pareto 
front, which leads to poor performance. Conversely, both 
the improved VEPSO algorithms were able to obtain non­
dominated solutions that cover the true Pareto front almost 
perfectly. Hence, both the improved VEPSO algorithms 
exhibited almost equal improvement, but VEPSOnds1 has 
weaker diversity performance as there are lesser solutions at 
the middle of the Pareto front.

Table 4 presents the performance measures for all algo­
rithms tested for the ZDT4 problem. The average number of 
nondominated solutions found by the conventional VEPSO 
algorithm is relatively low compared with VEPSOnds1, which 
found most of the solutions. The conventional VEPSO algo­
rithm had great difficulty escaping from the multiple local 
optima, which resulted in a verylarge GD value. However, the 
improved VEPSO algorithms, in which particles are guided
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HV
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Figure 11: Plots of the performance metrics for various numbers of iterations. (a) Number of solution. (b) Generational distance. (c) Spread.
(d) Hypervolume.

by the nondominated solutions, had less chance of being 
stuck in local optima. Meanwhile, the HV value yielded by the 
conventional VEPSO algorithm is relatively small compared 
with that of the improved VEPSO algorithms. Thus, the 
smaller SP value for conventional VEPSO does not mean 
it has better performance, as both improved VEPSO still

maintain performance advantages with their better GD and 
HV values.

Figure 8 shows the nondominated solutions with the 
best GD measure returned for the ZDT4 problem. The 
conventional VEPSO algorithm, in which particles follow 
only one guide, was easily stuck in local optima, as shown
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T a b l e  1: Algorithm performance tested on ZDT1 problem.

13

T a b l e  3: Algorithm performance tested on ZDT3 problem.

Measure VEPSO VEPSOnds1 VEPSOnds2 Measure VEPSO VEPSOnds1 VEPSOnds2
NS NS

Ave. 30.220000 100.000000 99.790000 Ave. 35.150000 99.600000 99.400000
SD 5.697031 0.000000 1.458483 SD 6.853997 3.405284 6.000000
Min. 16.000000 100.000000 86.000000 Min. 21.000000 66.000000 40.000000
Max. 44.000000 100.000000 100.000000 Max. 53.000000 100.000000 100.000000

GD GD

Ave. 0.295865 0.022637 0.002194 Ave. 0.173060 0.009607 0.002040
SD 0.051645 0.014201 0.003505 SD 0.031253 0.008293 0.002268
Min. 0.139491 0.000283 0.000169 Min. 0.079595 0.000433 0.000223
Max. 0.432478 0.073477 0.019113 Max. 0.276801 0.039481 0.013231

SP SP

Ave. 0.834481 0.729350 0.571807 Ave. 0.871146 1.109448 1.121149
SD 0.039111 0.160298 0.248304 SD 0.043319 0.086041 0.099980
Min. 0.705367 0.322322 0.168144 Min. 0.701884 0.902861 0.858725
Max. 0.917087 1.219625 1.127141 Max. 1.001428 1.322024 1.362217

HV HV

Ave. 0.001886 0.428153 0.631216 Ave. 0.004722 0.373133 0.471686
SD 0.010058 0.113432 0.046091 SD 0.021699 0.083015 0.038568
Min. — 0.185313 0.438793 Min. — 0.112859 0.332399
Max. 0.087426 0.659603 0.661363 Max. 0.167359 0.506222 0.514600

Table 2: Algorithm performance tested on ZDT2 problem. Table 4: Algorithm performance tested on ZDT4 problem.

Measure VEPSO VEPSOnds1 VEPSOnds2 Measure VEPSO VEPSOnds1 VEPSOnds2
NS NS

Ave. 8.070000 38.120000 97.490000 Ave. 6.610000 95.250000 64.220000
SD 6.356822 25.747131 7.832198 SD 3.920665 16.518967 38.860949
Min. 1.000000 1.000000 49.000000 Min. 1.000000 15.000000 4.000000
Max. 24.000000 100.000000 100.000000 Max. 21.000000 100.000000 100.000000

GD GD

Ave. 0.766956 0.039653 0.002003 Ave. 5.062543 0.383646 0.349438
SD 0.324444 0.063791 0.003483 SD 3.167428 0.478535 0.431632
Min. 0.240509 0.000000 0.000198 Min. 0.000000 0.000155 0.000165
Max. 1.679803 0.310345 0.017750 Max. 13.350278 2.049212 1.923652

SP SP

Ave. 0.944524 0.947356 0.687560 Ave. 0.858655 1.035510 0.962023
SD 0.065266 0.111963 0.278814 SD 0.147255 0.347336 0.367664
Min. 0.797757 0.695715 0.242474 Min. 0.483073 0.077112 0.144160
Max. 1.080351 1.278655 1.460767 Max. 1.236461 1.419225 1.435101

HV HV

Ave. — 0.137784 0.296372 Ave. 0.228824 0.399914 0.437755
SD — 0.117596 0.053300 SD 0.188151 0.159971 0.155761
Min. — — 0.043514 Min. — — —
Max. — 0.311075 0.327309 Max. 0.573978 0.661941 0.660821
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T a b l e  5: Algorithm performance tested on ZDT6 problem.

Measure VEPSO VEPSOnds1 VEPSOnds2
NS

Ave. 76.590000 78.040000 81.030000
SD 32.884891 26.684055 25.075021
Min. 11.000000 22.000000 24.000000
Max. 100.000000 100.000000 100.000000

GD

Ave. 0.338537 0.260666 0.266259
SD 0.370336 0.158592 0.168404
Min. 0.001746 0.044137 0.035520
Max. 1.552521 0.709692 0.735990

SP

Ave. 1.201796 1.276529 1.286909
SD 0.146782 0.083293 0.075052
Min. 0.492064 0.987981 1.067748
Max. 1.435395 1.437289 1.410091

HV

Ave. 0.304584 0.303381 0.281256
SD 0.134813 0.102216 0.119017
Min. — 0.038143 0.026496
Max. 0.400964 0.400780 0.401005

in the first plot. Thus, the algorithm was able to find only 
one nondominated solution. However, both the improved 
VEPSO algorithms, in which additional guides are used, 
had less difficulty in obtaining a greater number of diverse 
nondominated solutions.

Table 5 presents the performance measures for all algo­
rithms tested on the ZDT6 problem. Interestingly, all algo­
rithms found approximately the same number of nondom i­
nated solutions. Moreover, the SP and HV values for all algo­
rithms are also similar. However, noticeably, both improved 
VEPSO have outperformed the conventional VEPSO in 
terms of convergence performance.

Figure 9 shows the nondominated solutions with the best 
GD measure returned for the ZDT6 problem. As predicted, 
the plots of nondominated solutions are similar because all 
algorithms exhibit similar results in terms of convergence 
and diversity. However, the nondominated solutions for the 
VEPSOnds2 algorithm were not well distributed over the true 
Pareto front, middle of the Pareto front in this case, which 
caused the algorithm to have the largest SP value, as shown 
in Table 5.

For all test problems, the improved VEPSO algorithms 
exhibited significant improvement compared with the con­
ventional VEPSO algorithm for most of the performance 
measures. The performance improvements occurred because 
the nondominated solutions always provide a better solution 
than a solution that optimises only a single-objective func­
tion. Using a better solution as the leader increases the quality 
of the result.

4.4. Analysis o f the Number o f Particles. The performance of 
the VEPSOnds2 algorithm with various numbers of particles 
is analysed in this experiment. Most of the parameters are 
the same as in the previous experiment, except that the 
particles are equally divided between swarms for a total of 
10, 30, 50,100, 300, 500, and 1000 particles. The performance 
measurements, taken for each total number of particles and 
for each benchmark problem, are plotted in Figure 10.

In short, the performance of VEPSOnds2 improves when 
the number of particles is increased. When VEPSOnds2 is 
computed with 250 iterations, the algorithm performs well 
at 300 particles, which is equivalent to 75 000 function 
evaluations. With a higher number of particles, the algorithm 
exhibits even better results, but the computational time 
increases dramatically.

4.5. Analysis o f the Number o f Iterations. The effect of 
various numbers of iterations on VEPSOnds2 performance 
is investigated in this experiment. In this experiment, the 
number of iterations becomes 10, 30, 50, 100, 300, 500, 
1000, 3000, 5000, or 10 000. All parameters are set as in the 
previous experiments, and the number of particles is set to 
100, which is divided equally between swarms. The plot of 
performance metrics for the various numbers of iterations for 
each benchmark problem is displayed in Figure 11.

When the number of iterations is increased, the perfor­
mance of VEPSOnds2 improves. The VEPSOnds2 algorithm 
performs consistently and acceptably with 100 particles when 
there are 300 iterations or 30 000 function evaluations. Com ­
putation of the algorithm with a higher number of iterations, 
such as 3000 particles or 300 000 function evaluations, could 
result in a better performance but is only recommended if a 
powerful computing platform is used.

4.6. Benchmarking with the State-of-the-Art Multiobjective 
Optimisation Algorithms. The VEPSOnds2 algorithm per­
formed better than the other algorithms in most test cases. 
Thus, the performance of this algorithm is compared to four 
other MOO algorithms which are nondominated sorting 
genetic algorithm-II (NSGA-II) [11], strength pareto evo­
lutionary algorithm 2 (SPEA2) [23], archive-based hYbrid 
scatter search (AbYSS) [24], and speed-constrained mul­
tiobjective PSO (SMPSO) [25]. For a fair comparison, all 
algorithms compute 25 000 function evaluations with the 
archive size set to 100. The NSGA-II, commonly used for 
performing comparisons, was set to use a population size 
of 100 for optimisation. This algorithm was set to use 
the Simulated Binary Crossover (SBX) operator with the 
crossover probability p c = 0.9 and polynomial mutation 
[26] operators with the mutation probability p m = 1/N. 
The distribution index for both operators was set to =

= 20. The SPEA2 was set to use the same parameters 
as in NSGA-II. The AbYSS was set to use a population size 
of 20. The pairwise combination parameters in AbYSS were 
set to RefSetj = 10 and RefSet2 = 10. The polynomial 
mutation parameters were set to similar values as those in 
NSGA-II and SPEA2. In SMPSO, the population size and 
maximum iteration were set to 100 and 250, respectively. The
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T a b l e  6: Performance comparison based on ZDT1 test problem.

Measure AbYSS NSGA-II SPEA2 SMPSO VEPSOnds2
NS

Ave. 100.000000 100.000000 100.000000 100.000000 99.790000
SD 0.000000 0.000000 0.000000 0.000000 1.458483
Min. 100.000000 100.000000 100.000000 100.000000 86.000000
Max. 100.000000 100.000000 100.000000 100.000000 100.000000

GD

Ave. 0.000185 0.000223 0.000220 0.000117 0.002194
SD 0.000035 0.000038 0.000028 0.000031 0.003505
Min. 0.000125 0.000146 0.000154 0.000053 0.000169
Max. 0.000343 0.000374 0.000400 0.000172 0.019113

SP

Ave. 0.105387 0.379129 0.148572 0.076608 0.571807
SD 0.012509 0.028973 0.012461 0.009200 0.248304
Min. 0.080690 0.282485 0.116765 0.056009 0.168144
Max. 0.136747 0.441002 0.174986 0.099653 1.127141

HV

Ave. 0.661366 0.659333 0.659999 0.661801 0.631216
SD 0.000269 0.000301 0.000301 0.000100 0.046091
Min. 0.660267 0.658486 0.659347 0.661372 0.438793
Max. 0.661724 0.659909 0.660629 0.661991 0.661363

Table 7: Performance comparison based on ZDT2 test problem.

Measure AbYSS NSGA-II SPEA2 SMPSO VEPSOnds2
NS

Ave. 100.000000 100.000000 100.000000 100.000000 97.490000
SD 0.000000 0.000000 0.000000 0.000000 7.832198
Min. 100.000000 100.000000 100.000000 100.000000 49.000000
Max. 100.000000 100.000000 100.000000 100.000000 100.000000

GD

Ave. 0.000131 0.000176 0.000182 0.000051 0.002003
SD 0.000067 0.000066 0.000039 0.000003 0.003483
Min. 0.000056 0.000093 0.000090 0.000044 0.000198
Max. 0.000433 0.000707 0.000304 0.000060 0.017750

SP

Ave. 0.130425 0.378029 0.158187 0.071698 0.687560
SD 0.090712 0.028949 0.027529 0.013981 0.278814
Min. 0.080831 0.311225 0.118114 0.035786 0.242474
Max. 0.833933 0.430516 0.365650 0.106749 1.460767

HV

Ave. 0.325483 0.326117 0.326252 0.328576 0.296372
SD 0.023209 0.000297 0.000908 0.000077 0.053300
Min. 0.096409 0.325278 0.318785 0.328349 0.043514
Max. 0.328505 0.326696 0.327559 0.328736 0.327309
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T a b l e  8: Performance comparison based on ZDT3 test problem.

Measure AbYSS NSGA-II SPEA2 SMPSO VEPSOnds2
NS

Ave. 100.000000 100.000000 100.000000 99.900000 99.400000
SD 0.000000 0.000000 0.000000 0.904534 6.000000
Min. 100.000000 100.000000 100.000000 91.000000 40.000000
Max. 100.000000 100.000000 100.000000 100.00000 100.000000

GD

Ave. 0.000193 0.000211 0.000230 0.000203 0.002040
SD 0.000019 0.000013 0.000019 0.000061 0.002268
Min. 0.000144 0.000180 0.000184 0.000155 0.000223
Max. 0.000264 0.000268 0.000327 0.000717 0.013231

SP

Ave. 0.707651 0.747853 0.711165 0.717493 1.121149
SD 0.013739 0.015736 0.008840 0.032822 0.099980
Min. 0.696859 0.715199 0.698590 0.697943 0.858725
Max. 0.796404 0.793183 0.775317 0.950901 1.362217

HV

Ave. 0.512386 0.514813 0.513996 0.514996 0.471686
SD 0.011314 0.000159 0.000675 0.001737 0.038568
Min. 0.463776 0.514449 0.510764 0.500484 0.332399
Max. 0.515960 0.515185 0.514668 0.515818 0.514600

Table 9: Performance comparison based on ZDT4 test problem.

Measure AbYSS NSGA-II SPEA2 SMPSO VEPSOnds2
NS

Ave. 99.680000 100.000000 100.000000 100.000000 64.220000
SD 3.100603 0.000000 0.000000 0.000000 38.860949
Min. 69.000000 100.000000 100.000000 100.000000 4.000000
Max. 100.000000 100.000000 100.000000 100.000000 100.000000

GD

Ave. 0.001231 0.000486 0.000923 0.0001347 0.349438
SD 0.002632 0.000235 0.001428 0.000027 0.431632
Min. 0.000148 0.000163 0.000176 0.000070 0.000165
Max. 0.014472 0.001374 0.012292 0.000187 1.923652

SP

Ave. 0.159842 0.392885 0.298269 0.092281 0.962023
SD 0.120180 0.037083 0.125809 0.011777 0.367664
Min. 0.078244 0.324860 0.137934 0.067379 0.144160
Max. 1.073669 0.473358 0.884091 0.124253 1.435101

HV

Ave. 0.646058 0.654655 0.645336 0.661401 0.437755
SD 0.034449 0.003406 0.018773 0.000162 0.155761
Min. 0.472299 0.642177 0.505799 0.660934 0.000000
Max. 0.661594 0.659710 0.658784 0.661726 0.660821
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T a b l e  10: Performance comparison based on ZDT6 test problem.

Measure AbYSS NSGA-II SPEA2 SMPSO VEPSOnds2
NS

Ave. 100.000000 100.000000 100.000000 100.000000 81.030000
SD 0.000000 0.000000 0.000000 0.000000 25.075021
Min. 100.000000 100.000000 100.000000 100.000000 24.000000
Max. 100.000000 100.000000 100.000000 100.000000 100.000000

GD

Ave. 0.000549 0.001034 0.001761 0.012853 0.266259
SD 0.000015 0.000102 0.000192 0.024813 0.168404
Min. 0.000510 0.000804 0.001267 0.000502 0.035520
Max. 0.000596 0.001360 0.002207 0.092434 0.735990

SP

Ave. 0.097740 0.357160 0.226433 0.390481 1.286909
SD 0.013129 0.031711 0.020658 0.497140 0.075052
Min. 0.070455 0.282201 0.179482 0.042666 1.067748
Max. 0.130389 0.441311 0.292897 1.377582 1.410091

HV

Ave. 0.400346 0.388304 0.378377 0.401280 0.281256
SD 0.000172 0.001604 0.002714 0.000076 0.119017
Min. 0.399821 0.383637 0.371907 0.401081 0.026496
Max. 0.400842 0.392123 0.385626 0.401402 0.401005

terms r 1 = r2 = random [0.1,0.5], and the terms q  = 
c2 = random [1.5,2.0]. This algorithm was also set to use 
polynomial mutation [27] with p m = 1 /N  and = 20.

Table 6 lists the performance of the algorithms on the 
ZDT1 test problem. The number of solutions found by the 
VEPSOnds2 is comparable to the other algorithms. However, 
the average GD value of the VEPSOnds2 is at least 10 times 
greater than that of the others even though its minimum GD 
value is close to that of the other algorithms. VEPSOnds2 
also has the highest average SP value, but its m inimum SP 
is better than that of NSGA-II. The HV value for VEPSOnds2 
is similar to that of the other algorithms.

Table 7 lists the performance of the algorithms on the 
ZDT2 test problem. VEPSOnds2 was able to obtain a reason­
able number of solutions compared to the other algorithms. 
However, the GD value for VEPSOnds2 is the highest among 
all algorithms. Additionally, VEPSOnds2 has the greatest 
average SP value, even though its minimum SP value is 
better than that of NSGA-II. In the HV measure, the average 
value returned by VEPSOnds2 is relatively close to the 
other algorithms and even outperforms the NSGA-II with its 
maximum value.

Table 8 lists the performance of the algorithms on the 
ZDT3 test problem. SMPSO and VEPSOnds2 both show poor 
performance with respect to the maximum number of solu­
tions for all runs. Again, VEPSOnds2 has a 10 times greater 
GD value compared to the other algorithms. Interestingly, 
the diversity performance of VEPSOnds2 is very poor, as the 
average SP value is higher than 1.0. However, the maximum

HV value of VEPSOnds2 was not the smallest, and its average 
is almost as large as the rest.

Table 9 lists the performance of the algorithms on the 
ZDT4 test problem. The multiple local optima featured in 
this problem challenged VEPSOnds2 greatly, as the number 
of solutions obtained is very low. In addition, the convergence 
and diversity performances were very poor, as the GD and SP 
values are both very large compared to the other algorithms. 
The HV value was also poor, as the multiple local optima 
feature is well known as a natural weakness in PSO-based 
algorithms [18, 19].

Finally, Table 10 lists the performances of the algorithms 
on the ZDT6 test problem. On average, VEPSOnds2 does not 
obtain the highest number of nondominated solutions, but 
the number is still in an acceptable range. However, the GD 
value for VEPSOnds2 was too far from the other algorithms. 
In addition, the SP value for VEPSOnds2 is extremely large 
compared to the other algorithms, and the average HV value 
for VEPSOnds2 is smaller than that for the other algorithms. 
On a positive note, the maximum HV value for VEPSOnds2 
improves upon that for AbYSS, NSGA-II, and SPEA2.

The main purpose of this experiment is to present the 
overall performance of the improved VEPSO algorithm in 
comparison to state-of-the art algorithms, not to show how 
it outperforms them. Indeed, the overall performance of the 
VEPSOnds2 is not better than all the compared algorithms. 
However, relatively speaking, its performance is still within 
the acceptable range and is better than some of the other 
algorithms in certain cases.
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5. Conclusions

The conventional VEPSO algorithm uses one swarm to 
optimise one objective function. The optimisation is guided 
using only one best solution found by another swarm with 
respect to the objective function optimised by that swarm. 
In contrast, recent PSO-based MOO algorithms prefer to 
use the nondominated solutions as the particle guides. Thus, 
it is possible to m odify the VEPSO algorithm such that 
the particles are guided by nondominated solutions that are 
optimal at specific objective function. Five ZDT test problems 
were used to investigate the performance of the improved 
VEPSO algorithm based on the measures of the number of 
nondominated solutions found, the Generational Distance, 
the Spread, and the Hypervolume.

The experimental results show that the improved algo­
rithms were able to obtain better quality Pareto fronts 
than conventional VEPSO, especially VEPSOnds2, which 
consistently returned the best convergence and diversity 
performance. On the other hand, the introduction of poly­
nomial mutation should reduce the chance for a particle 
to get stuck in local optima, which features greatly in the 
ZDT4 test problem. However, VEPSOnds2 did not show 
much improvement compared to VEPSOnds1. This could 
possibly be due to the choice of the number of particles 
that are subject to mutation. Hence, the analysis for proper 
number of particles subject to mutation should be considered 
in future work. Even so, VEPSOnds2 is relatively better 
than VEPSOnds1, as confirmed by m ost of the performance 
measurements.

In addition, in VEPSOnds2, the particles of a swarm are 
guided by the same gBest(t). Thus, there is a greater chance 
for them to converge prematurely around the gBest(t) that 
might represent a locally optimal solution. On the other hand, 
in SMPSO, each particle will select one of the nondominated 
solutions by binary tournament, using the crowding distance 
as its guide. This means that in SMPSO, each particle has a 
different gBest(t) as a guide during optimisation. Thus, the 
future VEPSOnds2 algorithm should reduce the chances for 
all particles to follow the same gBest(t), in order to prevent 
premature convergence.
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