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ABSTRACT

This thesis demonstrates the application of Multivariate Statistical Process
Control (MSPC) monitoring method that is capable of detecting and diagnosing
process faults. Conventionally, T° Control Chart and Contribution Chart, which have
been widely used for these purposes, are not accurate and sensitive enough to detect
and diagnose abnormal changes in operating conditions. In order to overcome these
problems, the objective of this research is to develop new approaches, which can
improve the performance of the present conventional MSPC methods. Three new
approaches have been developed i.e., the Outline Analysis Approach for examining
the distribution of Principal Component Analysis (PCA) scores, the Correlation
Coefficient (Ci) Approach for detecting changes in the correlation structure within
the variables, and the Signal Cumulating Approach for gathering more information
regarding the fault. In order to implement the three new approaches, this research
proposed PCA Outline Analysis Control Chart and Correlation Coefficient Cw)
Control Chart for fault detection; and the 7° Score Contribution Chart, the Cy Score
Contribution Chart, 7° Score Contribution Chart with Signal Cumulating Approach
and the Cy Score Contribution Chart with Signal Cumulating Approach for fault
diagnosis. The results from the conventional method and new approaches were
compared based on their accuracy and sensitivity. Based on the results of the study,
the new approaches generally performed better compared to the conventional
approaches, particularly the PCA Outline Analysis Control Chart and Cj Score
Contribution Chart with Signal Cumulating Approach.
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ABSTRAK

Tesis ini menengahkan penggunaan kaedah pemantauan Kawalan Statistik
Berbilang Angkubah, (MSPC) sebagai teknik bagi mengesan dan mengenalpasti
kehadiran kesilapan dalam proses. Secara konvensional, Carta kawalan 7° dan Carta
Penyumbangan banyak digunakan tetapi tidak tepat dan kurang sensitif untuk mengesan
dan mengenalpasti perubahan tidak normal yang berlaku dalam proses. Bagi mengatasi
kelemahan ini, objektif penyelidikan ini adalah untuk membangunkan beberapa kaedah
baru yang dapat mempertingkatkan prestasi kaedah MSPC konvensional yang sedia ada.
Tiga pendekatan baru telah dicadangkan, iaitu Kaedah Analisis Garis Bentuk yang dapat
mengkaji corak taburan nilai Analisis Komponen Utama (PCA); Kaedah Pemalar
Hubungan, Cy, yang dapat mengesan perubahan struktur kolerasi antara angkubah; dan
Kaedah Konggokan bagi mengumpul maklumat mengenai kesilapan. Untuk
mengaplikasikan tiga kaedah baru ini, penyelidikan ini mencadangkan, Carta Kawalan
Analisis Garis Bentuk PCA dan Carta Kawalan Cj, untuk mengesan kehadiran kesilapan.
Bagi mengenalpasti punca kesilapan pula, Carta Penyumbang Nilai 7°, Carta
Penyumbang Nilai Cy, Carta Penyumbang Nilai 7° secara Konggokan dan Carta
Penyumbang Nilai Cy secara Konggokan disyorkan. Keputusan dari kaedah
konvensional dan kaedah baru yang dicadangkan akan dibandingkan berdasarkan
ketepatan dan kepekaan. Keputusan daripada kajian ini menunjukkan prestasi kaedah
baru yang dicadangkan adalah lebih baik berbanding dengan kaedah konvensional,
terutamanya, Carta Kawalan Analisis Garisan Bentuk PCA dan Carta Penyumbang Nilai

Ci Konggokan.
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CHAPTER 1:

INTRODUCTION

Chemical process systems are hi ghly sensitive to abnormal changes in
operating condition. So that, to attain the maximum possible yield in chemical
process, it is necessary to ensure that the process is maintained around the desired
limit. As a direct consequence, the accuracy and the sensitivity of the process
monitoring tool is very important. The Multivariate Statistical Process Control
(MSPC) method has been applied because it provided a wide range of tools to
perform process monitoring and also very effective at extracting hidden information
in problems with multiple correlated variables (Louwerse and Smilde, 2000). This
research demonstrates the application of the MSPC method to provide a monitoring

tool, which is capable of detecting and diagnosing the process fault.

1.1  Research Background of the Project.

Most of the Statistical Process Control (SPC) techniques involve operations
on single response variables such as weight, pH, temperature, specific gravity,
concentration and pressure. This is natural because one is usually interested in a
problem involving a single response. Normally, the fault in the process is sought
through the usage of the SPC control chart, but in practice, most of the SPC control
charts are based on charting only a small number of variables, usually the final
product of quality variables. These approaches are often inadequate for modern and
complex process industries. For this reason, a multivariate approach is applied in the

SPC realm to detect the fault condition in the large number of variable observations.



There are however, a number of occasions when more than one response
variable (multivariate) are of importance to a problem, and these variables should be
studied collectively in order to take advantage of the information about the
relationship among the data. With the advance of process sensors and data
acquisition systems, today’s chemical processes are becoming better instrumented. In
many cases, this instrumentation provides an abundance of data, some of which can
be classified as redundant for example, the measurements are highly correlated.
Multivariate method such as Principal Component Analysis (PCA) can express the
essential information contained in these measurements in term of relatively “small
dimension” of new variables without losing the previous information. By applying
the MSPC, this new strategy of monitoring fault and diagnosis process operating
condition can predict process degradation and equipment failure; thus it can improve

the chemical plant production process using the diagnosis through this method.

Fault detection and the monitoring of process performance is an integral part
for a successful operation. The MSPC chart can be used to monitor the performance
of any given process. The main function of this control chart is to compare the
current state of the process against the “Normal Operating Condition (NOC)”. The
“NOC” condition exists when the process or product variables remain close to the
desired values. In contrast, the “Out of Control (OC)” occurs when fault appears in
the process. The fault or malfunction is designated when the process departs from an

acceptable range of observed variables.

1.2 Problem Statement.

The present conventional MSPC has several weaknesses in process fault
detection and diagnosis. Some researchers in this field had commented that the
MSPC is a powerful tool for data complexity reduction and fault detection in the
significant fault appearance data. According to Manabu and his research
partner,(2000), the current fault detection and diagnosis method via MSPC is limited

to significant faults and does not point put the insignificant ones accurately. Qin



(2001) also commented that the contribution chart does not have a control limit,
making it difficult to determine what is the root cause of the abnormal operating

condition.

As a summary of summary other researchers, the weakness of the
conventional MSPC can be briefly concluded into three disadvantages. First of all,
the complicated control charts are not “user-friendly”, secondly, the conventional
MSPC fault detection tools are easily rise up to noisy-fault-signals and lastly, the
conventional fault diagnosis is not ready with a proper control limit, thus it cannot
determine the root cause of the fault, especially multiple faults. In order to improve
the limitation of MSPC, this research should focuses on the alterative, which can

solve the disadvantages mentioned above.

1.3  Research Objective.

To develop new approaches those improve the conventional MSPC based

fault detection and diagnosis methods performance.

14 Scope of Research.

1) Matlab is used to run the dynamic model simulation of a typical Ethylene
Oxide reaction system (Westerterp and Ptasinski, 1984).

i1) Generate a set of normal operating condition (NOC) data.
iil) Generate several sets of out-of-control condition (OC) data that contains

various multiple appearance disturbance and small operation condition

change.



vii)

viii)

Develop conventional MSPC on-line monitoring systems for process fault
detection (conventional PCA based T-control chart) and diagnosis

(conventional PCA score contribution chart).

Develop modified MSPC on-line monitoring systems for process fault

detection and diagnosis (PFDD).

Develop new approaches:
a) Outline Analysis Approach
b) Cross-variable Correlation, Cy Approach
c) Signal Cumulating Approach

Formulate the fault detection by implementing new approaches such as:
a) PCA Model Profile Outline Analysis Control Chart,
b) Ci Control Chart,

Improving the conventional contribution chart for fault diagnosis purpose.
These contribution chart are:

a) T? Score Contribution Chart,

b) Ci Score Contribution Chart

¢) T? Score Contribution Chart with Signal Cumulating,

d) Ci Score Contribution Chart with Signal Cumulating,

All of these proposed methods and conventional methods are compared in
terms of sensitivity and accuracy in:

a) Multiple fault identifiability,

b) Insignificant fault identifiability,



1.5 Research Contribution.

In this research, effort mainly concentrates on breaking through the current
limitation and the further application of MSPC on a multivariable continuous

chemical process. The main contributions of this research are:

i) Application of MSPC tools on the fault detection and diagnosis for tubular

reactor in a chemical plant.

ii) An Eigenvalue-eigenvector PCA (EPCA) approach had been used for
developing Principals Components model instead of the conventional

NIPALS algorithm.

iii) Modified Process Fault Detection and Diagnosis, PFDD mechanisms are
also developed based on the Outline Analysis, Cross-variable Coefficient,
and Signal Cumulating approaches.

1.6 Organization of The Thesis

This thesis contains six chapters: introduction, literature review, process
modeling, research methodology, results analysis and discussion, and conclusion as
well as recommendations. The first chapter of this thesis mainly presents about the
introduction of the research projects, which consists of the research background,

problem statement, research objectives and scopes.

Second chapter, covers the literatures review. This chapter presents the
development of Process Fault Detection and Diagnosis and MSPC methods. While,
Chapter III will then presented the outline of reactor modeling procedures and the

way multiple cooled tubular reactor modeling has been adopted.

In the following chapter, the methodology for the research project will be
proposed. The proposed methodologies are described and presented step by step.



Chapter V mainly focuses on results analysis and discussion. The suggested fault
detection and diagnosis results are presented and compared to the results obtained by

means of conventional approach.

Finally, this thesis wrap up with the conclusion and recommendations for

future researches.
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Since the proposed MSPC method has shown promising performance over
the conventional MSPC method, the incoming step is to develop a user-
friendly computer interface, which enables the application of this new

method.

Except the reaction process, the proposed MSPC approach can be applied
to various kinds of unit operations in the chemical industries. Such as
separation unit operation, mixing operations and so on. In addition, the
future research can focuses on the applicatipn of MSPC for batch system

and semi batch system.

Other tools can be implemented to get the relationship between the
correlated variables instead of PCA. The incoming researchers can try to
implement other extension of PCA such as Dynamic PCA, Non-linear
PCA, Multiblok-PCA or other techniques as well, such as Projection
Latent Structures, PLS

As this research only focuses to the application of MSPC for single unit
operation monitoring, the future research activities can study on the
application of the proposed approach to plant-wide system. Such as the
MSPC plant wide monitoring for a simulation plant, real plant or pilot

plant.

On the other hand, MSPC can be applied in other engineering field, which
deal with a large input and out put data. As an example, MSPC can
formulate the statistical model, control limit and optimum condition for

process safety monitoring, environmental control and process design.
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