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Abstract: An amylopullulanase of the thermophilic Anoxybacillus sp. SK3-4 (ApuASK) 

was purified to homogeneity and characterized. Though amylopullulanases larger than  

200 kDa are rare, the molecular mass of purified ApuASK appears to be approximately 

225 kDa, on both SDS-PAGE analyses and native-PAGE analyses. ApuASK was stable 

between pH 6.0 and pH 8.0 and exhibited optimal activity at pH 7.5. The optimal 

temperature for ApuASK enzyme activity was 60 °C, and it retained 54% of its total 

activity for 240 min at 65 °C. ApuASK reacts with pullulan, starch, glycogen, and dextrin, 

yielding glucose, maltose, and maltotriose. Interestingly, most of the previously described 

amylopullulanases are unable to produce glucose and maltose from these substrates. Thus, 

ApuASK is a novel, high molecular-mass amylopullulanase able to produce glucose, 

maltose, and maltotriose from pullulan and starch. Based on whole genome sequencing 

data, ApuASK appeared to be the largest protein present in Anoxybacillus sp. SK3-4. The 

α-amylase catalytic domain present in all of the amylase superfamily members is present in 

ApuASK, located between the cyclodextrin (CD)-pullulan-degrading N-terminus and the 

α-amylase catalytic C-terminus (amyC) domains. In addition, the existence of a S-layer 
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homology (SLH) domain indicates that ApuASK might function as a cell-anchoring enzyme 

and be important for carbohydrate utilization in a streaming hot spring. 

Keywords: Anoxybacillus; amylase; Bacillus; Geobacillus; glycoside hydrolase 13; 

pullulan; pullulanase; starch; thermostable enzyme 

 

1. Introduction  

Glycoside hydrolases (GHs) are a group of enzymes that catalyze the hydrolysis of glycosidic 

bonds in carbohydrates. To date, GH families have been divided into 132 groups and reported in the 

Carbohydrate-Active enZymes (CAZy) database [1]. Most starch-degrading enzymes belong to the 

GH13 family, which is also known as the α-amylase family [2]. The members within this family share 

the following, common characteristics: (i) they attack α-glycosidic bonds; (ii) they hydrolyze  

α-glycosidic bonds to yield α-anomeric, mono- or oligosaccharides (hydrolysis), or form α,1-4 or  

α,1-6-glycosidic bonds (also known as transglycosylation), or a combination of both activities; (iii) the 

amino acid sequences contain four conserved regions; and (iv) the enzymes possess a (β/α)8 or  

TIM barrel structure and Asp, Glu, and Asp are the catalytic residues [2]. Often, starch-degrading 

enzymes possess a carbohydrate-binding module (CBM). The CBMs are currently divided into  

67 primary structure-based families [1]. CBMs with affinity for starch (i.e., CBM20, CBM25, and 

CBM48) are commonly known as starch-binding domains (SBDs) [3]. In general, CBM is a  

non-catalytic ancillary domain that mediates the attachment of polysaccharide (i.e., starch) granule 

surfaces to the enzymes and facilitates the degradation process by distorting the conformation and 

packing of the polysaccharides [3]. 

Pullulan is a polysaccharide consisting of repeating units of maltotriose joined by α-1,6 glycosidic 

bonds and a small number of α-1,4 linked maltotetraose units [4]. Pullulan exhibits certain properties 

desired for dietary and pharmaceutical applications [5]. Pullulanases (pullulan-6-glucanohydrolase) are 

enzymes that degrade pullulan, starch, and other polysaccharides, yielding various oligosaccharides [6]. 

Type I and II pullulanases are more frequently reported than other class members. Type I pullulanase 

(Pul, EC 3.2.1.41) specifically hydrolyzes the α-1,6 glycosidic bonds of pullulan. In contrast, type II 

pullulanase (amylopullulanase, Apu, EC 3.2.1.1/41) possesses a similar hydrolytic activity to type  

I but also possesses the ability to hydrolyze α-1,4 glycosidic bonds [4]. In general, Apu enzymes are 

classified as a member of the GH13 family [2]. 

The Apu enzyme is employed in conjunction with other amylolytic enzymes (i.e., α-amylase and 

glucoamylase) in industrial starch liquefaction- and saccharification-processing industries because of 

its catalytic properties [6]. Apu can be used as an additive in laundry and dishwashing detergents [7] 

and as an antistaling agent in baking [4]. Driven by the demand of the starch-processing industries, 

considerable efforts have been made to obtain enzymes from thermophiles such as Geobacillus, 

Thermoanaerobacter, and Thermoanaerobacterium species (Table 1). Several thermostable enzymes 

from various Anoxybacillus species were identified [8], yet an Apu has not been reported. We herein 

describe the purification and biochemical properties of a high molecular-mass Apu from Anoxybacillus 

sp. SK3-4 (ApuASK). This strain is known for its starch- and pullulan-degrading activities [9]. This 
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study also provides an analysis of the protein sequence and relates the protein sequence with its 

potential importance in carbohydrate utilization by the cells. 

Table 1. Source and biochemical properties of several known Apus. 

Source TE 
MW 

(kDa) 

Opt. temp. 

(°C) 

Opt. 

pH 

Reaction product  

from pullulan 
Ref. 

Anoxybacillus sp. SK3-4 N 225 60 7.5 
Maltotriose, maltose  

and glucose 

This 

study 

Bacillus sp. XAL601 R 224 70 9.0 Maltotriose [10] 

Geobacillus stearothermophilus TS-23 R 220 ND ND ND [11] 

Geobacillus thermoleovorans NP33 R 182 60 7.0 Maltotriose [12] 

Geobacillus stearothermophilus ATCC 12980 R 184 ND ND ND [13] 

Thermoanaerobacter pseudoethanolicus ATCC 33233 R 160 ND ND ND [14] 

Thermoanaerobacter thermohydrosulfuricus E101 R 165 80 ND Maltotriose [15] 

Thermoanaerobacterium saccharolyticum NTOU1 R 100 a 70 5.0 Maltotriose and maltose [16] 

Thermoanaerobacterium thermosulfurigenes EM1 R 205 ND ND ND [17] 

Bacillus sp. KSM-1378 N 210 50 9.5 
Maltotriose, maltohexaose 

and maltononaose 
[7] 

Bifidobacterium breve UCC2003 R 182.3 a ND ND 
Maltotriose and 

maltohexaose 
[18] 

Lactobacillus plantarum L137 R 211 40 4.0 Maltotriose [19] 

Geobacillus sp. L14 N 100 a 65 5.5 
Maltotriose, maltose  

and glucose 
[20] 

a approximately; TE = type of enzyme; MW = molecular weight; Opt. temp. = optimum temperature; Opt. pH = optimum pH;  

Ref. = reference; N = native enzyme; R = recombinant enzyme; ND = not determined. 

2. Results  

2.1. Genomic Sequencing of Strain SK3-4 

The whole genome of Anoxybacillus sp. SK3-4 was sequenced using the Illumina MiSeq platform 

(San Diego, CA, USA). The de novo assembly and annotation was performed using the CLC 

Genomics Workbench 4.8 (CLC Bio, Aarhus, Denmark) and Blast2GO [21] programs. Several 

glycosyl hydrolase (GH) enzymes that are involved in the degradation of starch or pullulan were  

data-mined using the dbCAN CAZy web resource [22]. These enzymes include amylopullulanase, 

ApuASK (C289_2785), α-amylase, ASKA (C289_0468), α-glucosidase (C289_0469), type I 

pullulanase (C289_2260), glycosidase (C289_2139), and oligo-1,6-glucosidase (C289_0857, 

C289_1909, and C289_2139). Several putative sugar transporters (C289_0465, C289_0466, 

C289_0467, C289_0603, C289_0763, C289_0764, C289_0765, C289_0778, C289_0779, C289_0780, 

C289_1015, C289_1174, C289_1392, C289_1394, C289_1910, C289_1911, and C289_1912) were 

also found in the Blast2GO annotation. The draft genome was submitted to the National Center for 

Biotechnology Information (NCBI) Bioproject with accession no. PRJNA174378. 
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2.2. Analysis of the ApuASK Sequence 

The apuASK gene appeared to be the largest coding open reading frame (ORF) in the entire 

Anoxybacillus sp. SK3-4 genome. The presence of the apuASK gene was further confirmed by 

conventional polymerase chain reaction (PCR) amplification. The intact gene is initiated by a GTG 

start codon, a 90 bp nucleotide that encodes a signal peptide, and terminates with TAA. The GC 

content was 43%. The gene consists of 6102 nucleotides that encode a protein containing 2033 amino 

acid residues (including the 30 amino acid region corresponding to the signal peptide). The theoretical 

molecular mass of the mature sequence is predicted to be 221,212.6 Da, which is close to the 

experimentally obtained size (225 kDa). The gene sequence and amino acid sequence for ApuASK are 

shown in Figure S1. 

The relationship between ApuASK and multiple selected Apus is shown in Figure 1a. ApuASK 

clustered closely with the Apus of Bacillus sp. XAL601 (similarity of 90.4%), Geobacillus 

stearothermophilus TS-23 (85.1%), Geobacillus thermoleovorans NP33 (74.3%), and Geobacillus 

stearothermophilus ATCC 12980 (71.2%). ApuASK is distinguished from Thermoanaerobacter and 

Thermoanaerobacterium Apus, which are only 36.6%−39.2% similar. The distance between ApuASK 

and the Apus of Bacillus sp. KSM-1378, Bifidobacterium breve UCC2003, and Lactobacillus plantarum 

L137 are rather long, and the sequence similarity is in the range of only 6%−12%. 

Figure 1. (a) The protein relationship tree of Apu from Anoxybacillus, Bacillus, Geobacillus, 

Thermoanaerobacter, Thermoanaerobacterium, Bifidobacterium, and Lactobacillus.  

(b) Schematic representation of conserved domains identified by motif search for the 

respective Apus. 
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ApuASK contains the cyclodextrin (CD) and pullulan-degrading enzyme N-terminal domain 

(A336−T414), the α-amylase catalytic domain (Q452−R912), and the α-amylase catalytic C-terminal 

(amyC) domain (D917−L1001) (Figure 1b). Two fibronectin type III (FnIII) domains (T1006−L1092; 

Q1214−T1302) are located between the catalytic domains and the CBM20 carbohydrate binding 

domain (T1302−A1399) (Figure 1b).  

The cell-anchoring S-layer homology (SLH) domain (E1811−R1874; F1875−A1936; V1944−M2003) 

was present in ApuASK. A similar domain is detected in the Apus of Bacillus sp. XAL601 and  

G. stearothermophilus TS-23. The Apus of Bacillus sp. KSM-1378 [23] and Bifidobacterium breve 

UCC2003 [18] are anchored to the cytoplasmic membrane by a hydrophobic transmembrane structure 

(Figure 1b). In contrast, the L. plantarum L137 Apu is covalently attached to the cell-wall peptidoglycan 

and associated polymers via the LPXTG-motif [24]. 

The conserved regions I, II, III, and IV of ApuASK consist of the peptide sequences DGVFNH, 

GWRLDVANE, EIWD, and LIGSHD, respectively (Figure S1). The WebLogo comparison of  

these regions among various α-amylases (Amy), cyclodextrin glucanotransferases (CGTase), type I 

pullulanases (Pul), and amylopullulanases (Apu) is summarized in a supplemental figure (Figure S2).  

2.3. Purification of Apu 

The presence of a signal peptide (Figure S1) indicates that ApuASK is an extracellular enzyme, 

although a portion of the secreted enzyme could bind to the microbial cell wall via the SLH domain. In 

a separate experiment, the extracellular, cell-bound, and intracellular fractions of an overnight culture 

of Anoxybacillus sp. SK3-4 were subjected to ApuASK activity. Pullulytic activity was detected in the 

cell-bound fraction, suggesting that ApuASK is a cell-anchoring enzyme. Relatively higher pullulytic 

activity was observed in the extracellular fraction (data not shown), which could be due to leaching 

effects due to over-expressing ApuASK under the experimental conditions. 

ApuASK was purified from cell free supernatant using three purification steps that involved 

ultrafiltration, affinity chromatography, and anion exchange chromatography. ApuASK is a monomeric 

protein because the purified enzyme had an apparent molecular mass of approximately 225 kDa on 

sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) analyses as well as native-PAGE analyses 

(Figure S3). A clear band of 225 kDa was also observed on the zymograms prepared to evaluate the 

pullulytic and amylolytic activities (Figure S3). The zymograms indicated that ApuASK is able to 

degrade pullulan and starch.  

Together with the Apus of Bacillus sp. XAL601 (224 kDa) [10], G. stearothermophilus TS-23  

(220 kDa) [11], Bacillus sp. KSM-1378 (210 kDa) [7], and L. plantarum L137 (211 kDa) [19], 

Anoxybacillus ApuASK (225 kDa) is among the few Apus that exhibited high molecular-mass  

(Table 1). In this report, these enzymes are classified as high molecular-mass Apus.  

2.4. Effects of pH and Temperature on Enzyme Activity and Stability 

The optimal pH for ApuASK was found to be pH 7.5 (Figure 2a). The enzyme was found to be 

stable in the pH range of 6.0−8.0, and lost more than 50% of its relative activity at pH 4.0−5.0 and  

pH 9.0−11.0 (Figure 2a). ApuASK exhibited an optimal temperature at 60 °C (Figure 2b). The enzyme 

was stable between 30 to 60 °C for 20 min (Figure 2b). The thermostability of ApuASK was further 
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examined over a period of 240 min (4 h) at temperatures ranging from 60 to 70 °C. ApuASK retained 

more than 90% of its original activity at its optimal temperature (60 °C), whereas ApuASK retained 

64% and 54% of its original activity at 65 °C after 120 min and 240 min (4 h) incubation, respectively 

(Figure 2c).  

Figure 2. Biochemical characterizations of ApuASK. (a) Effects of pH on activity (●) and 

stability (○) of ApuASK; (b) Effects of temperature on activity (●) and stability (○) of 

ApuASK; (c) Thermostability of ApuASK at 60 °C (■), 65 °C (□), and 70 °C (▼). Values 

are the mean ± standard error of triplicate analyses. 

 

2.5. Effects of Buffers, Metal Ions, and Chemical Reagents 

The best buffer for the catalytic activity of ApuASK was potassium phosphate buffer (pH 7.5). In 

comparison, the enzyme activity in the sodium phosphate and Tris-HCl buffers was reduced by more 

than 50% (Table 2).  

As shown in Table 2, the catalytic activity of ApuASK was enhanced by the addition of K+, Fe2+, 

Fe3+, Mg2+, Mn2+, Co2+, Cu2+, and Ni2+. In contrast, the addition of various chemicals reagents 

significantly affected enzymatic activity. Among the reagents tested, EDTA (chelating agent) strongly 

inhibited ApuASK with 97% of the original activity lost (Table 2). In the presence of urea (protein 

denaturant), 75% of the original activity of ApuASK was also lost. Cyclic cyclodextrins (α-, β-, and  

γ-CDs) reduced the activity to 19, 6, and 2%, respectively, of the original activity (Table 2).  
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Table 2. Effects of different buffers, metal ions, and chemical reagents on the activity  

of ApuASK. 

Buffers, metal ions, and chemical reagents Relative activity (%) 

Buffers (100 mM, pH 7.5)  
Sodium phosphate 47 ± 0.04 

Potassium phosphate 100 ± 0.08 
Tris-HCl 45 ± 0.05 
MOPS 94 ± 0.02 

HEPES-NaOH 15 ± 0.02 

Metal ions (2 mM)  
None 100 ± 0.02 
Na+ 91 ± 0.01 
K+ 128 ± 0.01 

Fe2+ 108 ± 0.01 
Fe3+ 196 ± 0.50 
Mg2+ 114 ± 0.02 
Mn2+ 182 ± 0.02 
Co2+ 217 ± 0.03 
Cu2+ 135 ± 0.03 
NH4

+ 83 ± 0.01 
Hg2+ 16 ± 0.02 
Zn2+ 70 ± 0.02 
Ni2+ 154 ± 0.02 
Rb2+ 14 ± 0.02 

Chemical reagents  
None 100 ± 0.02 

5 mM EDTA  3 ± 0.04 
1 mM SDS 33 ± 0.06 

10 mM DTT 45 ± 0.08 
10 mM β-mercaptoethanol 27 ± 0.05 

3 mM Urea 25 ± 0.06 
1% (v/v) Tween-20 20 ± 0.09 

1% (v/v) Triton X-100 15 ± 0.02 
0.1% (w/v) α-CD 19 ± 0.02 
0.1% (w/v) β-CD 6 ± 0.01 
0.1% (w/v) γ-CD 2 ± 0.01 

Values are the mean ± standard error from triplicate analyses. 

2.6. Analysis of the Reaction Products 

The pattern of hydrolysis of ApuASK reacting with pullulan was studied by analyzing the reaction 

products obtained over the course of 24 h using high performance liquid chromatography (HPLC) 

(Figure 3a). At the beginning of the time course (2 h), maltotriose was found to be the major sugar  

type formed and the remaining product was maltose. This suggests that ApuASK preferably cleaves  

α-1,6 glycosidic bonds rather than α-1,4 glycosidic bonds. In the prolonged reaction (6−24 h), the 
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glucose and maltose fraction continued to increase due to ApuASK degrading the α-1,4 glycosidic 

bonds (Figure 3a).  

Figure 3. Analysis of reaction products using HPLC. (a) Production of glucose (black), 

maltose (light grey), and maltotriose (grey) by ApuASK on pullulan at different time 

intervals; (b) Production of glucose (black), maltose (light grey), and maltotriose (grey) by 

ApuASK on individual substrate of pullulan, soluble starch, amylose, amylopectin, glycogen, 

and dextrin. 

 

Other than pullulan, ApuASK was also able to degrade soluble starch, glycogen, and dextrin to 

glucose, maltose, and maltotriose, respectively (Figure 3b). The ability of the enzyme to degrade α-1,6 

and α-1,4 glycosidic bonds was further determined based on its reaction with amylopectin and 

amylose, respectively (Figure 3b). ApuASK is classified as an exo-acting enzyme, and these results are 

in agreement with the description earlier reported [6]. 

Maltotriose could be mistaken as panose or isopanose because these compounds are eluted from  

a HPLC column with very similar retention times. To confirm that the hydrolysis product was 

maltotriose (which possesses only α-1,4 glycosidic bonds) and not panose or isopanose (which 

possesses both α-1,4 and α-1,6 glycosidic bonds), an established differential approach was used [25]. 

After ApuASK had reacted with pullulan, the mixture was treated with commercial glucoamylase from 

Aspergillus niger (Sigma-Aldrich, St. Louis, MO, USA) prior to being injected into the HPLC system. 

Under these conditions, glucose was formed as the sole product (data not shown), indicating that 

ApuASK produced maltotriose rather than panose or isopanose. 

3. Discussion 

ApuASK exhibited optimal activity at pH 7.5 and 60 °C and stability at marginally acidic and 

slightly alkaline conditions (pH 6.0–8.0). The pH and temperature tolerances of ApuASK were found 

to be similar to those of the growth conditions for Anoxybacillus sp. SK3-4 [9]. The characteristics of 

ApuASK are different from those of other high molecular-mass Apus (Table 1). For instance, the Apu 

of L. plantarum L137 is optimally active at pH 4.0 and stable at pH 2.5−6.5 [19], whereas the Apu of 

Bacillus sp. KSM-1378 has an optimal pH of 9.5 and is stable from pH 9.0 to pH 10.0 [7].  

The optimal temperature (60 °C) of ApuASK further distinguished itself from those of the other high 

molecular-mass Apus (Table 1). The enzymes from L. plantarum L137 and Bacillus sp. KSM-1378 
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exhibit lower optimal temperatures, of 40 °C [19] and 50 °C [7], respectively. In contrast, the high 

molecular-mass Apu from Bacillus sp. XAL601 has maximal activity at 70 °C [10]. 

Other high molecular-mass Apus displayed product specificity that is dissimilar from that of 

ApuASK (Table 1). Analysis of the reaction products revealed that ApuASK possesses an unequivocal 

ability to only produce glucose, maltose, and maltotriose from pullulan. This characteristic was 

reported for only one other Apu (100 kDa), the Apu of Geobacillus sp. L14 [20]. 

Analysis of the primary protein sequence revealed that ApuASK and most of the reported Apus 

have a triad of catalytic domains in a cluster (Figure 1b). First, the CD and pullulan degrading enzyme 

N-terminus domain functions to assist the binding and hydrolysis of pullulan [26]. The adjacent  

α-amylase catalytic domain is a region where the hydrolysis of α-1,6 and α-1,4 glycosidic bonds 

occurs. The third catalytic-related domain, the amyC domain, binds and orientates the α-glucan chains 

of starch to ensure their proper position so that the enzyme can act upon the starch [27].  

ApuASK is a typical Apu with a singular active site for the hydrolysis of α-1,6 and α-1,4 glycosidic 

bonds. In contrast, the Apus of Bacillus sp. KSM-1378 [23] and Bifidobacterium breve UCC2003 [18] 

have an additional type I pullulanase domain (catalytic site) at the C-terminal end (Figure 1b). These 

two enzymes are known as bi-functional Apus. A bi-functional Apu performs two catalytic activities at 

two different reaction sites within the same protein [23]. The α-amylase catalytic domain hydrolyzes 

the α-1,4 glycosidic bonds of the substrates to malto-oligosaccharides while the type I pullulanase 

domain acts on α-1,6 glycosidic bonds of pullulan, yielding maltotriose and its derivatives [18]. 

Interestingly, the Apu of L. plantarum L137 does not follow the two-domain arrangement of other 

Apus (Figure 1b). 

All of the analyzed Apu enzymes from thermophilic strains of Anoxybacillus, Geobacillus, 

Thermoanaerobacter, and Thermoanaerobacterium species contain CBM20 (Figure 1b). The CBM20 

separates the polysaccharide (i.e., starch) chains on the substrate surfaces, hence increasing the 

accessibility to enzymatic attack [3]. The Apu enzymes of Bacillus sp. KSM-1378 and L. plantarum 

L137 employ the CBM48 group instead. Two binding domains, CBM48 and CBM25, were found in 

the Apu of Bifidobacterium breve UCC2003 (Figure 1b). CBM48 functions to facilitate the binding of 

various polysaccharides particularly glycogen to the enzyme [28] whereas CBM25 assists the binding 

of α-glucooligosaccharides (particularly containing the α-1,6 glycosidic bonds) and granular starch [29]. 

In addition, an FnIII domain is found in the Apu enzymes that contain a CBM20 domain but not in 

Apu enzymes with other types of CBM (Figure 1b). The FnIII domain is composed of a seven-stranded 

beta sandwich and is found only in extracellular GHases. The domain is non-essential for catalytic 

reactions, but it may serve as a linker that regulates the binding of the substrate with the enzyme [30]. 

Nine-repeated sequences of PGSGTT, including interrupts by a PGSGTA and PGSGTM 

(P1531−T1596), were found in ApuASK (Figures S1 and 1b). An identical stretch of 9 tandem repeats 

of PGSGTT was found in G. stearothermophilus TS-23 Apu [11]. The Apu of Bacillus sp. XAL601 

has a similar sequence but with a different initial amino acid (GSGTTP) sequence that is replicated  

12 times [10]. The repeat regions are most likely folded in a coil at the C-terminus; their role is yet to 

be determined. The repeated sequence (QPT, 50 times) in the Apu of L. plantarum L137 is atypical of 

the aforementioned Apus, and deletion of the repeats did not alter its function [19]. 

Less is known about the long C-terminal region of the Apus in comparison to the knowledge of the 

catalytic domains in the N-terminus. Truncation of the C-terminus of the Bacillus sp. XAL601 Apu 
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suggested its importance in alkaliphily [31]. The deletion of the C-terminal portion of the Apus of  

G. stearothermophilus TS-23 [11] and G. thermoleovorans NP33 [12] resulted in contradictory effects 

on catalytic efficiency. C-terminal deletions of the Apus of Thermoanaerobacterium saccharolyticum 

NTOU1 [16] and Thermoanaerobacter pseudoethanolicus ATCC 33233 [32] suggested that the  

C-terminus might not be required for enzymatic reaction. 

Figure 4. Illustration of carbohydrate (i.e., starch) utilization in Anoxybacillus sp. SK3-4. 

Several types of putative transporters and enzymes that are involved in carbohydrate 

utilization in Anoxybacillus sp. SK3-4 were identified through the analyzed sequence data 

from genome sequencing. The localization of the enzymes was predicted using PSORTb 

3.0. ApuASK and α-amylase from Anoxybacillus sp. SK3-4, ASKA [33] are cell-bound 

proteins whiles other enzymes are expressed intracellularly. 

 

Why would the aforementioned bacteria, including Anoxybacillus sp. SK3-4, produce high 

molecular-mass Apus with most of the C-terminal regions being unimportant for their catalytic 

properties? The answer may rest in the cell-anchoring domain near the C-terminus. The natural habitat 

of Anoxybacillus sp. SK3-4 is a streaming hot spring where the water flows rapidly. The secreted 

amylolytic enzymes would be washed away by the stream and be unable to help the cells acquire 

carbon sources. Cell-bound amylolytic enzymes would be important to degrade starchy substrates. 

Based on the PSORTb 3.0 predictions for the amylolytic enzymes identified from genome sequencing, 
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ApuASK and α-amylase (designated as ASKA) [33] are the two enzymes that anchor to the cells 

(Figure 4). Both enzymes hydrolyze starch to glucose, maltose, and maltodextrins that would be 

transported into the cells via one of the importer systems (Figure 4). Subsequently, these oligosaccharides 

are converted to glucose through the actions of several intracellular glycosides and a type I pullulanase 

(Pul). ApuASK and ASKA might be important in the initial stage of starchy substrate degradation. 

A gene knockout study demonstrated that Apu plays an important role in carbohydrate metabolism 

and is essential for the survival of Bifidobacterium breve UCC2003 [18]. Although this type of 

analysis has not been performed with Anoxybacillus, the function of its high molecular-mass Apu 

might be analogous. Experiments to validate this claim using an Anoxybacillus knockout approach will 

be conducted in the near future. 

4. Experimental Section  

4.1. Chemicals 

All of the chemicals were analytical and molecular grades and purchased from Sigma-Aldrich  

(St. Louis, MO, USA), unless otherwise stated. Pullulan was obtained from TSI Europe (Zwijndrecht, 

Belgium). Soluble starch was purchased from the Kanto Chemical Co. Inc. (Tokyo, Japan). Red 

pullulan was purchased from Megazyme (County Wicklow, Ireland). α-cyclodextrin (α-CD),  

β-cyclodextrin (β-CD), and γ-cyclodextrin (γ-CD) were purchased from Cyclolab Ltd. (Illatos, 

Hungary). The freeze-dried epoxy-activated Sepharose 6B medium and the HiTrap Q Fast Flow 

column were obtained from GE Healthcare (Uppsala, Sweden).  

4.2. Bacterial Strain, Genome Sequencing, and Protein Sequence Analysis  

The Anoxybacillus sp. SK3-4 was isolated from the Sungai Klah (SK) hot spring in Malaysia [9]. 

High-quality genomic DNA was isolated from an overnight culture of Anoxybacillus sp. SK3-4 and 

treated using the protocol suggested by Illumina. Genomic sequencing was performed using the 

Illumina MiSeq system at the University of Malaya. The draft genome was submitted to the NCBI 

Bioproject with accession no. PRJNA174378. 

The presence of the apuASK gene sequence in the genome was validated by PCR amplification 

using the following primers: forward primer 5'-GTG RRG RGA AGA TGG RRA AAG-3' and reverse 

primer 5'-TTA CAT CAA TTT TMC TTT TSY TAA AAA CTC C-3'.  

The amino acid sequence of ApuASK and other Apu were analyzed using various programs, 

including PFAM [34], SMART [35], PROSITE [36], PSORTb 3.0 [37], ClustalW [38], and  

WebLogo 3.3 [39]. The protein relationship tree was generated using MEGA5 software [40]. 

4.3. Bacterial Culture Conditions 

Qualitative screening for pullulytic activity was performed by assessing the formation of clearance 

zones on Thermus medium [9] supplemented with 10 mg/mL of red pullulan. Anoxybacillus sp. SK3-4 

was routinely cultured in a medium that was optimized for ApuASK production, which contained  

7.9 g/L of pullulan, 1.2 g/L of tryptone, 3.9 g/L of ammonium chloride, and 1.0 g/L of MgSO4·7H2O [41]. 
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The initial pH of the medium was 8.29. The culture was incubated at 55 °C with orbital shaking at 200 rpm 

for 12 h. The cellular localization of ApuASK was determined following the method of Mahajan et al. [42]. 

4.4. Determination of Enzyme Activity and Protein Concentration 

Apu activity was determined using the 3,5-dinitrosalicylic acid (DNS) method established by  

Miller [43] with slight modifications. A reaction mixture containing 0.1 mL of enzyme and 1.0 mL of 

1.0% (w/v) pullulan in 100 mM potassium phosphate buffer (pH 7.5) was incubated at 60 °C for  

15 min. The DNS reagent (0.5 mL) was then added into the mixture, followed by 50 µL of 0.1 N 

NaOH. Subsequently, the mixture was boiled for 5 min and the absorbance intensity at 540 nm was 

measured. Glucose was used as the assay standard. One unit (U) of Apu activity was defined as the 

amount of enzyme that generated 1 μmol of reducing sugar in 1 min at 60 °C. 

The protein concentration was quantified using the Lowry method [44] with bovine serum albumin 

(BSA) as the standard. The enzyme activity and protein concentration assays were performed at least 

in triplicate, unless otherwise specified. 

4.5. Purification of Apu 

All of the purification steps were performed at 4 °C unless otherwise specified. The Anoxybacillus 

sp. SK3-4 culture was centrifuged (8000× g for 15 min) and the cell-free supernatant was concentrated 

using a 100 kDa molecular weight cut-off (MWCO) polyethersulfone Vivaflow 50 crossflow ultrafiltration 

system (Sartorius Stedim Biotech, Aubagne Cedex, France). 

The concentrated enzyme was then loaded onto an in-house α-CD epoxy-activated Sepharose 6B 

column (column volume (CV) of 30 mL). The column was equilibrated with 20 mM sodium phosphate 

buffer (pH 7.4), and the bound enzyme was eluted with 500 mM NaCl in the same buffer supplemented 

with 1% (w/v) α-CD, at a flow rate of 0.5 mL/min. The fractions that had pullulytic activity were 

pooled and dialyzed overnight against the same buffer in SnakeSkin dialysis tubing with a 10 kDa 

MWCO (Thermo Fisher Scientific, Rockford, IL, USA). 

Subsequently, the dialyzed sample was subjected to a pre-packed HiTrap Q Fast Flow column  

(CV of 1 mL) equilibrated with 20 mM sodium phosphate buffer (pH 7.4). The bound enzyme was 

eluted with a linear gradient of 0–100 mM NaCl at a flow rate of 1.0 mL/min. The active fractions 

were pooled and dialyzed overnight against the same buffer. 

4.6. Gel Electrophoresis and Zymography 

The molecular mass and purity of ApuASK was estimated from electrophoresis in a 12% (w/v) 

SDS-PAGE analysis. The enzyme activity (zymography) of ApuASK was evaluated using a 12% (w/v) 

native-PAGE analysis. Zymography to determine the pullulytic activity was conducted according to 

Furegon et al. [45], except that the gel was immersed in 100 mM potassium phosphate buffer (pH 7.5) 

and then incubated at 60 °C for 24 h. Zymography to determine the amylolytic activity was conducted 

as described by Yang et al. [46], except that the starch solution was prepared in 100 mM potassium 

phosphate buffer (pH 7.5) and the incubation temperature was 60 °C. 
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4.7. Effects of pH and Temperature on Enzyme Activity and Stability 

The effect of pH on the activity and stability of ApuASK was determined in a pH range of 4.0 to 

11.0. The buffers used were (100 mM of each buffer) the following: sodium acetate (pH 4.0–5.0), 

potassium phosphate (pH 6.0–7.5), Tris-HCl (pH 8.0–9.0), and glycine-NaOH (pH 10.0–11.0). To 

determine the pH stability, the enzyme was incubated in the different buffers at room temperature for 

30 min without substrate, and then the residual activity was measured under the standard conditions. 

The effect of temperature on enzyme activity and stability was determined at temperatures ranging 

from 30 to 100 °C, at the optimal pH of 7.5. Thermal stability was evaluated by incubating the enzyme 

without substrate at the different temperatures for 20 min, and then the residual activity was 

determined using the standard assay conditions. Thermostability was assessed for up to 240 min (4 h); 

samples were taken at periodic intervals and the residual activity was measured using the standard 

assay conditions. 

4.8. Effects of Buffers, Metal Ions, and Chemical Reagents  

The influence of the following different buffers on ApuASK activity was investigated (100 mM of 

each buffer at pH 7.5): potassium phosphate, sodium phosphate, Tris-HCl, MOPS, and HEPES-NaOH. 

The enzyme was reacted with dissolved substrate in the five different buffers at 60 °C and the relative 

activity was determined. 

The effect of various metal ions and chemical reagents on ApuASK activity was examined. The 

enzyme was assayed in the presence of 2 mM chloride salts and different concentrations of chemical 

reagents (Table 2) at 60 °C in 100 mM potassium phosphate buffer (pH 7.5). The residual activity of 

the enzyme was then determined using the standard assay conditions. The enzyme activity without the 

additive was the reference (100%). 

4.9. Analysis of the Reaction Products 

A Waters HPLC system with a Waters 2414 refractive index detector (Milford, MA, USA) was 

used for this analysis. The column employed was a 4.6 × 250 mm 0.5 µm Spherisorb NH2 column 

(Waters, Milford, MA, USA). The internal and external column temperatures were maintained  

at 30 °C. Acetonitrile:water (70:30, v/v) was used as the mobile phase, and the flow rate was set  

at 1.0 mL/min. 

The pattern of pullulan hydrolysis by ApuASK was studied for up to 24 h. ApuASK (±1.0 U) was 

incubated with 2% (w/v) pullulan in 100 mM potassium phosphate buffer (pH 7.5) at 60 °C. Samples 

were withdrawn at certain time intervals for 24 h. The enzymatic reaction was then stopped by  

boiling for 10 min. The insoluble particles were filtered using a 0.45 μm nylon-membrane syringe 

filter (Whatman, Maidstone, Kent, England). A common differential approach [25] was adopted to 

determine whether the reaction product of pullulan was maltotriose and not panose or isopanose.  

The incubation was performed with glucoamylase from Aspergillus niger (±1.0 U) in 100 mM sodium 

acetate buffer (pH 5.0) at 50 °C for 2 h. In general, glucoamylase is capable of degrading α-1,4 

glycosidic bonds but not the α-1,6 glycosidic bonds of short-chain oligosaccharides. Glucose, maltose, 

and maltotriose were used as standards in this analysis. Non-reacted substrates were used as controls. 
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The ability of ApuASK to hydrolyze six different types of substrates was then studied. ApuASK  

(±1.0 U) was incubated with 2% (w/v) of the following substrates: pullulan, soluble starch, amylose, 

amylopectin, glycogen, and dextrin in 100 mM potassium phosphate buffer (pH 7.5) at 60 °C for 18 h. 

The enzymatic reaction was then stopped by boiling for 10 min, filtered, and subjected to HPLC under 

the aforementioned conditions.  

4.10. Statistical Analysis 

The data obtained in this study were analyzed using SYSTAT 12 software (Systat Software Inc., 

San Jose, CA, USA). The data comparisons with a probability value (p-value) of less than 0.05 in the 

Student’s t-test demonstrated that the data were adequate to test all of the hypotheses.  

5. Conclusions  

Knowledge of the high molecular-mass Apus is rather limited. These large enzymes have been 

found only in Geobacillus, Bacillus, Lactobacillus, and Thermoanaerobacterium. This is the first report of 

a high molecular-mass Apu in Anoxybacillus. The ApuASK of Anoxybacillus sp. SK3-4 exhibited a high 

molecular-mass of 225 kDa. ApuASK degrades pullulan, soluble starch, amylose, amylopectin, glycogen, 

and dextrin to glucose, maltose, and maltotriose. Hence, the unique hydrolytic property of ApuASK, in 

tandem with its thermostability, suggests that this enzyme could be applied in the starch-processing 

industry. Currently, all of the other high molecular-mass Apus exhibit product specificity that is 

different from that of ApuASK. From its biochemical properties and the sequence information 

obtained from the genome sequencing project, ApuASK appears to be a new high molecular-mass Apu. 
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