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A spiking neurons network encodes information in the timing of individual spike times. A novel supervised learning rule for
SpikeProp is derived to overcome the discontinuities introduced by the spiking thresholding. This algorithm is based on an error-
backpropagation learning rule suited for supervised learning of spiking neurons that use exact spike time coding. The SpikeProp
is able to demonstrate the spiking neurons that can perform complex nonlinear classification in fast temporal coding. This study
proposes enhancements of SpikeProp learning algorithm for supervised training of spiking networks which can deal with complex
patterns. The proposed methods include the SpikeProp particle swarm optimization (PSO) and angle driven dependency learning
rate.These methods are presented to SpikeProp network for multilayer learning enhancement and weights optimization. Input and
output patterns are encoded as spike trains of precisely timed spikes, and the network learns to transform the input trains into target
output trains. With these enhancements, our proposed methods outperformed other conventional neural network architectures.

1. Introduction

For all three generations of neural networks, the output sig-
nals can be continuously altered by variation in synaptic
weights (synaptic plasticity). Synaptic plasticity is the basis for
learning in all ANNs. As long as there is nonvariant activation
function, accurate classification based on certain vector input
values can be implemented with the help of a BP learning
algorithm like gradient descent [1, 2].

Spiking neural network (SNN) utilises individual spikes
in time domain to communicate and to perform computation
in a manner like what the real neurons actually do [3, 4].
This method of sending and receiving individual pulses is
called pulse coding where information which is transmitted
is carried by the pulse rate. Hence, this type of coding permits
multiplexing of data [2].

For instance, analysis of visual input in humans requires
less than 100ms for facial recognition. Yet, facial recognition
was performed by [5] by using SNN with a minimum of 10
synaptic steps on the retina at the temporal lobe, allowing
nearly 10ms for the neurons to process. Processing time is
short, but it is sufficient to permit an averaging procedure

which is required by pulse coding [2, 5, 6]. In fact, pulse cod-
ing technique is preferred when speed of computation is the
issue [5].

2. Page Background and Related Works

2.1. Spiking Neural Networks (SNNs). Neural networks which
perform artificial information processing are built using
processing units composed of linear or nonlinear processing
elements (a sigmoid function is widely used) [6–9]. SNN had
remained unexplored for many years because it was consid-
ered too complex and too difficult to analyze. Apart from that,
biological cortical neurons have long time constants. Inhibi-
tion speed can be of the order of several milliseconds, while
excitation speed can reach several hundreds of milliseconds.
These dynamics can considerably constrain applications that
need fine temporal processing [10, 11].

Little is known about how information is encoded in
time for SNNs. Although it is known that neurons receive
and emit spikes, whether neurons encode information using
spike rate or precise spike time is still unclear [12]. For those
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supporting the theory of spike rate coding, it is reasonable to
approximate the average number of spikes in a neuron with
continuous values and consequently process them with tra-
ditional processing units (sigmoid, for instance). Therefore,
it is not necessary to perform simulations with spikes, as the
computation with continuous values is simpler to implement
and evaluate [13].

An important landmark study by Maass [14] has shown
that SNNcan be used as universal approximations of continu-
ous functions. Maass proposed a three-layer SNN (consisting
of the input layer, the generalization layer, and the selection
layer) to perform unsupervised pattern analysis. Reference
[15] applied spiking neural networks to several benchmark
datasets (which include internet traffic data, EEG data,
XOR problems, 3-bit parity problems, and iris dataset) and
performed function approximation and supervised pattern
recognition [16].

One of the ongoing issues in SNN research is how the
networks can be trained. Much research has been done on
biologically inspired local learning rules [13, 17], but these
rules can only carry out supervised learning for which the
networks cannot be trained to perform a given task. Classical
neural network research became famous because of the error-
backpropagation learning rule. Due to this, a neural network
can be trained to solve a problem which is specified by a
representative set of examples. Spiking neural networks use
a learning rule called SpikeProp which operates on networks
of spiking neurons and uses the exact spike time temporal
coding [18].This means that the exact spike time of input and
output spikes encodes the input and output values.

2.2. Learning in Networks of Spiking Neurons (SpikeProp).
Learning in the perceptron networks is usually performed by
a gradient descent method [19] by using the backpropagation
algorithm [20], which explicitly evaluates the gradient of an
error function. The same approach has been employed in
the SpikeProp gradient learning algorithm [18] which learns
the desired firing times of the output neurons by adapting
the weight parameters in the Spike Response Model SRM0
[21]. Several experiments have been carried out on SpikeProp
to clarify several burning issues, for example, the role of
the parameter initialization and negative weights [22]. The
performance of the original algorithm can be improved by
adding the momentum term [23]. SpikeProp can be further
enhanced with additional learning rules for synaptic delays,
thresholds, and time constants [24], which will normally
result in faster convergence and smaller network sizes for
the given learning tasks. An essential speedup was achieved
by approximating the firing time function using the logistic
sigmoid [25]. Implementation of SpikeProp algorithm on
recurrent network architectures has shown promising results
[26].

SpikeProp does not usually allowmore than one spike per
neuron, which makes it suitable only for “time-to-first-spike”
coding scheme [5]. Its adaptation mechanism fails for the
weights of neurons that do not emit spikes. These difficulties
are due to the fact that spike creation or its removal due to
weight updates is very discontinuous. ASNA-Prop has been
proposed [24] to solve this problem by emulating the feed

forward networks of spiking neurons with the discrete-time
analog sigmoid networks with local feedback, which is then
used for deriving the gradient learning rule. It is possible to
estimate the gradient by measuring the fluctuations in the
error function in response to the dynamic neuron parameter
perturbation [27].

SpikeProp adopts error backpropagation procedures
which have been used widely in the training of analog neural
networks to perform supervised learning [28]. SpikeProp
does have weaknesses.The first weakness concerns sensitivity
to parameter initialization values, which means that if the
neuron is still inactive after initialization, the SpikeProp will
not perform training for theseweightswhichwill not produce
any spike. The second weakness is that SpikeProp is only
suitable in cases where there is latency-based coding. The
third weakness is that SpikeProp works only for SNNs where
neurons spike only once in the simulation time. Finally,
SpikeProp algorithm has been designed for training the
weights only. To address these weaknesses, several improve-
ments to SpikeProp algorithms have been suggested [29].

3. Methodology

We introduce new learning rules and enhancement architec-
ture for improved SpikeProp.

3.1. Enhancement of SpikeProp Architecture by PSO (PSO-
SpikeProp) (Model 1). In this proposed method, the Spike-
Prop was accelerated using four basic parameters of PSO;
these parameters are the acceleration constant for 𝑔best,
the acceleration constants for 𝑝best, the time interval (Δ𝑡),
depending on the time of SpikeProp, and the number of
particles used in SpikeProp.

The acceleration constants are used in the simulation to
specify swarm behavior of particles. 𝑝best and 𝑔best positions
are formed by the constants 𝑐

1
and 𝑐
2
.The global best solution

over the particle depends on the pulse time of SpikeProp
(this is given by the constant 𝑐

1
). The individual personal

best solution over the particle depends on the pulse time of
the SpikeProp (this is given by the constant 𝑐

2
). If 𝑐
1
is more

than 𝑐
2
, the swarmmoves around the global best solution. On

the other hand, when 𝑐
2
is greater than 𝑐

1
, the swarm moves

around the individual personal best.
The time Δ𝑡 of the parameters in SpikeProp defines

the time in each pulse interval over each movement that
occurs in the solution space in the pools processes. Reducing
these parameters in SpikeProp leads to higher granularity
movement within the solution space and a higher 𝑑 time
value of the highest pulse in SpikeProp on the node. The
higher numbers of particles in the swarm or simulation
in SpikeProp form the greater amount of the space that is
covered in the problem; hence, the optimizationwill be fewer.

Depending on the node that has the higher pulse time
in SpikeProp solution space, the parameters can be adapted
to achieve better optimization. These basic parameters in
PSO are used by SpikeProp. There are subparameters which
depend on the dataset of the problem (like particle dimen-
sion, number of particles, and the stopping condition).
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Table 1: PSO parameters used in SpikeProp.

Parameters Values
𝑐
1
(𝑔best) 1.0

𝑐
2
(𝑝best) 1.0

Δ𝑡 (time interval) 0.1
Number of particles 20

Problem dimension Based on dataset SpikeProp
architecture

Stop condition SpikeProp minimum error or
maximum number of iterations

Range of particles From −1 to 1 [−1, 1]

The number of particles in SpikeProp using PSO signifi-
cantly affects the execution time. There is a tradeoff between
the size of the practical swarms and the execution time. PSO
with a well-selected parameter set can perform well under all
circumstances [30].

In this study, the parameters that have been used are
summarized in Table 1, while particle position (weight and
bias values) is initialized randomly with initial position
velocity value set at 0.

Each particle position of the swarm is represented by a
set of the weights for the current iteration. The dimension
of the practical swarm determines the weight number of
the network. In order to minimize the learning error, the
particle should move within the weight space. Updating the
weight of the network means changing the position in order
to reduce the number of iterations. For each iteration, a new
velocity calculation takes place to determine the new particle
position movement. A set of new weights is used to obtain
the new error, thus a new position. For PSO, the new weights
are registered even if there is no noticeable improvement.
This process applies for all particles. The global best particle
position is the one with the least number of errors. The
training process stops when the target minimum error is
reached or the numbers of computational processes exceed
the number of iterations allowable. When the training is
complete, the weights are used to compute the classification
error for the training patterns. The same patterns are used to
test the network by using the same set of weights.

No researcher has yet used SpikeProp on PSO. 𝑝best value
and 𝑔best value are applied to solve problems associated with
the learning error. The SpikeProp weight and SpikeProp
bias are achieved by adding the calculated velocity value
as shown in (1) and (2). A new set of positions is used to
produce the new learning error. In this proposedmethod, the
classification dataset output has been written in a minimum
number of iterations with the lowest error. The summary on
PSO-SpikeProp learning process is shown in Figure 1.

𝑤
𝑖𝑗
new = 𝑤

𝑖𝑗
old + Δ𝑤

𝑖𝑗
∗ Δ𝑡

󵄨󵄨󵄨󵄨󵄨

(𝑡)

𝑡=𝑡
𝑑

𝑗

, (1)

Δ𝑤
𝑖𝑗
(𝑛)=𝑐

1
∗ (𝑝best,𝑛 − 𝑤𝑖𝑗 (𝑛))+𝑐2∗(𝑔best,𝑛−𝑤𝑖𝑗 (𝑛))

󵄨󵄨󵄨󵄨󵄨

(𝑡)

𝑡=𝑡
𝑑

𝑗

.

(2)
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..
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Figure 1: PSO-SpikeProp learning process.

In this proposed technique, the PSO is applied to SpikeP-
rop algorithm (refer to Figure 1). Equation (1), the newweight
(𝑤
𝑖𝑗
new), is performed for each element of the positions
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of 𝑝best and 𝑔best. In (2), Δ𝑤
𝑖𝑗
(𝑛) subtracts the dimensional

weight of the element from the dimension from the best
vector and thenmultiplies this by a randomnumber (between
0.0 and 1.0) and an acceleration constant (𝑐

1
and 𝑐

2
). A

number of particles have been used to solve 8 different dataset
problems. The objectives of the study are to reduce errors,
enhance the learning rate of SpikeProp, and to speed up
the algorithm process. Figure 1 shows that particle swarms
with initial random rates have different mean squared error
(MSE). During the learning process, all particles move
together to get 𝑝best and 𝑔best. 𝑔best fit is an optimum solution.

3.2. Proposed 𝜇 Angle Driven Dependency Learning Rate
(Model 2). Theproposed𝜇 angle driven dependency learning
rate is an extension of Chan’s [31] adapted learning rate and
momentum during the training used in BP. This proposed
method enhances SpikeProp learning according to the angle
calculation between Δ𝐸(𝑛) and Δ𝑤(𝑛 − 1). The adaptation
adjusts the angle at 90 degrees as per the Pythagoras formula
method to get the square of the hypotenuse that equals to
the sum of the squares of the other two sides. If the angle is
less than 90 degrees, the learning rate is increased inversely,
but if the angle is larger than 90 degrees, the learning rate is
decreased.Thesemathematicalmethods have been applied to
enhance SpikeProp, as shown next.

(1) The angle 𝜃 between the change of errors and the
change of the weights can be calculated by

cos 𝜃 (𝑛) = Δ𝑊(𝑛 − 1)

√Δ𝐸 (𝑛)
2
+ Δ𝑊(𝑛 − 1)

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑡)

𝑡=𝑡
𝑑

𝑗

. (3)

(2) The adaption learning rate cab be calculated by using
the flowing formula:

𝜇 (𝑛) = 𝜇 (𝑛 − 1) ∗ (1 + 0.5 ∗ cos 𝜃 (𝑛)) . (4)

(3) Adaption of the momentum can be acquired as
follows:

𝛼 (𝑛) = 𝛼 (0) ∗
‖Δ𝐸 (𝑛)‖

‖Δ𝑊 (𝑛 − 1)‖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑡)

𝑡=𝑡
𝑑

𝑗

. (5)

(4) As mentioned previously, the weights can be changed
as follows:

Δ𝑊
𝑖𝑗
(𝑛) = 𝜇 (𝑛) ∗ (

𝜕𝐸

𝜕𝑊
𝑖𝑗

) + 𝛼 (𝑛) ∗ Δ𝑊
𝑖𝑗
(𝑛 − 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡

𝑡=𝑡
𝑑

𝑗

.

(6)

Fortunately, the learning rate is adaptedmuch faster when
we are using the modified adaptation rule:

𝜇 (𝑛) = 𝜇 (𝑛 − 1) ∗ (1 + 0.1 ∗ cos 𝜃 (𝑛)) . (7)

Moreover, a backtracking strategy has been used, which
reruns learning steps takingmore than half learning rate time
if total error increases. From this it can be concluded that the
learning rate gets improved in Spikeprop with a higher rate
than the standard SpikeProp.

3.3. Merging Model 1 with Model 2 for Enhancing SpikeProp
(Model 3). In order to get better performance and enhance
the operation of Spikeprop, amerging process betweenModel
1 and Model 2 (resulting in Model 3) has been carried out.
Model 3 has an architecture which is partly PSO and partly
angle driven dependency learning rate system.The flowchart
in Figure 2 shows the general working of Model 3.

3.4. Error Measurement Functions. The target of the Spike-
Prop algorithm is to learn a set of target firing times, denoted
by {𝑡𝑑
𝑗
}, at the output neurons 𝑗 ∈ 𝐽 for a given set of input

patterns {𝑃[𝑡
𝑗
⋅ ⋅ ⋅ 𝑡
ℎ
]}, where 𝑃[𝑡

𝑗
⋅ ⋅ ⋅ 𝑡
ℎ
] defines a single input

pattern described by single spike times for each neuron ℎ ∈
𝐻. Given the desired spike times {𝑡𝑎

𝑗
} and actual firing times

{𝑡
𝑎

𝑗
}, this error function is defined by

(a) MSE = 1
𝑛

𝑛

∑

2−1

(𝑡
𝑎

𝑗 2
− 𝑡
𝑑

𝑗 2
)
2

. (8)

This thesis uses other error functions such as RMSE (9),
MAPE (10) and MAD (11) to get more validation to evaluate
the accuracy of SpikeProp (SNN) that has been enhanced and
proposed (Models 1, 2, and 3).

Consider

(b) RMSE = √ 1
𝑛

𝑛

∑

2−1

(𝑡
𝑎

𝑗 2
− 𝑡
𝑑

𝑗 2
)
2

, (9)

(c) MAPE =
𝑛

∑

2−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡
𝑎

𝑗 2
− 𝑡
𝑑

𝑗 2

𝑡
𝑑

𝑗 2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∗
100

𝑛
, (10)

(d) MAD =
𝑛

∑

2−1

󵄨󵄨󵄨󵄨󵄨
𝑡
𝑎

𝑗 2
− 𝑡
𝑑

𝑗 2

󵄨󵄨󵄨󵄨󵄨

𝑛
. (11)

4. Results and Discussion

This section presents the results of study on learning of Spike-
Prop network based on the proposed method of improved
SpikeProp. The results for all datasets involved are analyzed
based on the convergence to MSE, RMSE, MAPE, and
MAD with their classification performance. The results of
the proposed methods for each dataset are analyzed based
on performance (accuracy). For analysis purposes, methods
of improved SpikeProp are used to train and optimize the
networks, comparing different measurements of error. The
results of SpikeProp based on the proposed method of
improved SpikeProp are presented in the following subsec-
tions.

4.1. Results and Analysis of Standard SpikeProp. This section
presents the result of standard SpikeProp for all datasets.
The results are analyzed based on the convergence to MSE,
RMSE, MAPE and MAD findings with their classification
performance as shown in Table 2. All experiments for stan-
dard SpikeProp are based on ten runs. From Table 2, RMSE
is better than MSE for the training datasets of BTX, Wine,
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Figure 2: Merge Model 1 with Model 2 learning process.

Heart, Iris, Diabetes, Breast Cancer, Liver, Hepatitis, and
XOR, respectively. The RMSE is also better than MAPE, and
MAD error measurements for all datasets. These show that
the SpikeProp algorithm also demonstrates in a direct way
that networks of spiking neurons can carry out complex,
nonlinear tasks in a temporal code. As the experiments
indicate, the SpikeProp algorithm is able to perform correct
classification on nonlinearly separable datasets with all types
of errors measurement compared to traditional sigmoidal
networks (BP) as shown in Table 3. Table 2 illustrates a
comparison of the measurements between the training and
testing of SpikeProp algorithm. From this table, we can see
that the SpikeProp converges with less errors than standard
BP.

4.2. Results and Analysis of Standard BP. The analyses of
standard BP for all datasets are validated based on MSE,
RMSE, MAPE, and MAD as shown in Table 3. From the
training part in Table 3, the RMSE is better than MSE for
the training datasets of Diabetes, Heart, Breast Cancer, Liver,
Hepatitis,Wine, Iris, BTX, and XOR, respectively.TheMSE is
also better thanMAPE andMAD for all datasets except BTX,
which shows thatMADvalues are less compared toMSE.This
traditional BP network is widely used by other researchers for

classification problems. Bohte et al. [18] designed SpikeProp
for BP learning strategy; the comparisons between BP and
SpikeProp are given in Tables 2 and 3. It shows that BP
generates higher errors compared to SpikeProp.

4.3. Analysis of the Proposed Model 1: PSO-Spikeprop. Table 4
reveals the MSE generalization from the training part. MSE
gives better results on Diabetes, Heart, Wine, and Breast
Cancer datasets and least competitive for Liver, Hepatitis,
Iris, BTX, and XOR datasets. For RMSE, the proposed PSO-
SpikeProp is better for Wine, BTX, Diabetes, Iris, and Heart
and less competitive in Liver, Breast Cancer, Hepatitis, and
XOR, respectively. For MAD, the finding is better in Breast
Cancer, Diabetes, and Heart and worse in Wine, Liver, Iris
Hepatitis, BTX, and XOR, respectively. On the other hand,
MAPE for PSO-SpikeProp gives higher error but still better
than standard SpikeProp algorithm.

The PSO-SpikeProp gives the smallest error in MAPE
compared to standard Spikeprop. However, PSO-SpikeProp
stands out to be better if RMSE is being compared. Since
the errors are squared before they are averaged, the RMSE
gives a relatively low error rates, although the MSE has close
values to RMSE as shown in Table 4. Therefore, Model 1:
PSO-SpikeProp has its own good characteristics in generating
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Table 2: Analysis for standard SpikeProp algorithm.

Training SpikeProp Testing SpikeProp
MSE RMSE MAPE MAD MSE RMSE MAPE MAD

Breast cancer 0.549 0.496 43.305 0.992 0.571 0.511 44.419 1.023
BTX 1.713 0.225 36.294 1.575 2.190 0.269 44.451 1.888
Diabetes 0.426 0.386 31.556 0.773 0.492 0.420 34.348 0.840
Heart 0.442 0.374 32.058 0.749 0.367 0.335 29.820 0.671
Hepatitis 0.690 0.551 47.732 1.102 0.702 0.558 48.509 1.117
Iris 0.814 0.384 40.992 1.153 0.122 0.345 19.124 1.036
Liver 0.684 0.525 41.984 1.051 0.721 0.542 43.184 1.085
Wine 0.525 0.293 34.152 0.879 0.514 0.287 33.553 0.863

Table 3: Analysis for standard BP algorithm.

Training BP Testing BP
MSE RMSE MAPE MAD MSE RMSE MAPE MAD

Breast cancer 0.672 0.525 54.759 1.278 0.816 0.638 54.443 1.277
BTX 1.982 0.796 88.018 2.575 2.707 0.798 88.344 2.588
Diabetes 0.510 0.429 37.576 1.271 0.792 0.627 59.208 1.255
Heart 0.608 0.477 41.902 1.270 0.805 0.633 55.724 1.267
Hepatitis 0.837 0.646 55.588 1.293 0.837 0.647 55.607 1.294
Iris 0.874 0.763 69.176 2.290 0.865 0.759 68.660 2.278
Liver 0.826 0.641 56.315 1.283 0.831 0.643 56.459 1.287
Wine 0.749 0.419 72.471 1.119 0.753 0.408 72.649 1.125

Table 4: Analysis for Model 1.

Training Model 1 Testing Model 1
MSE RMSE MAPE MAD MSE RMSE MAPE MAD

Breast cancer 0.356 0.361 35.261 0.723 0.367 0.372 36.268 0.745
BTX 1.270 0.199 35.596 1.398 1.763 0.247 43.785 1.730
Diabetes 0.241 0.245 22.650 0.490 0.284 0.277 25.778 0.555
Heart 0.2828 0.281 26.813 0.563 0.272 0.272 25.997 0.545
Hepatitis 0.483 0.448 42.640 0.896 0.494 0.457 43.609 0.915
Iris 0.351 0.251 33.270 0.754 0.112 0.147 18.38 0.443
Liver 0.360 0.340 31.854 0.680 0.383 0.357 33.332 0.714
Wine 0.312 0.196 25.033 0.590 0.305 0.196 25.269 0.589

the smallest error during the implementation. For this model
we conclude that error can be reduced to reach the minimum
value.

4.4. Analysis of the Proposed Model 2: SpikeProp with Angle
Driven Dependency (𝜇). Similar to previous experiments, the
results ofModel 2 of SpikePropwith angle driven dependency
are computed based on MSE, RMSE, MAPE, and MAD
errormeasurements. Table 5 shows the findings of themodel,
which are based on ten independent runs on both training
and testing datasets, respectively. The average testing errors
are being calculated along with the standard deviations for
all datasets.

As can be seen from Table 5, it is interesting to see the
small standard deviations for all error rates on the training set

and the testing set in all datasets. The results of this proposed
Model 2 have demonstrated that the generalization of MSE
is better for Diabetes, Heart, and Wine datasets, while the
results for Liver, BTX, Hepatitis, Iris, Breast Cancer, and XOR
datasets are the least competitive.The results also have shown
that the RMSE is better on all datasets and less competitive
for other error measurements except for the Diabetes dataset
which has better MSE values compared to RMSE. In general,
the diversity of errors rates (MSE, RMSE, MAPE, and MAD)
for this proposedModel 2 is considered better for all datasets.
According to thismodel, we can find that the error is less than
BP and SpikeProp standard.

4.5. Analysis of the Proposed Model 3: Hybridization of Model
1 and Model 2. Just as we get good strain by cross-breeding
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Table 5: Analysis for Model 2.

Training Model 2 Testing Model 2
MSE RMSE MAPE MAD MSE RMSE MAPE MAD

Breast cancer 0.472 0.451 40.922 0.902 0.489 0.465 37.977 0.930
BTX 1.256 0.191 32.779 1.338 1.899 0.253 44.841 1.774
Diabetes 0.248 0.251 23.103 0.503 0.290 0.283 25.455 0.566
Heart 0.360 0.326 29.344 0.653 0.327 0.307 26.355 0.614
Hepatitis 0.523 0.500 42.233 1.001 0.452 0.435 43.929 0.872
Iris 0.438 0.278 34.668 0.835 0.117 0.377 18.335 1.131
Liver 0.419 0.379 34.285 0.759 0.444 0.397 34.289 0.795
Wine 0.365 0.229 28.329 0.688 0.358 0.229 28.679 0.689

Table 6: Analysis for Model 3.

Training Model 3 Testing Model 3
MSE RMSE MAPE MAD MSE RMSE MAPE MAD

Breast cancer 0.350 0.355 34.812 0.711 0.361 0.367 35.863 0.734
BTX 0.972 0.162 27.401 1.138 1.592 0.226 39.155 1.585
Diabetes 0.211 0.212 20.218 0.425 0.251 0.245 23.496 0.491
Heart 0.252 0.250 24.543 0.501 0.241 0.240 23.634 0.481
Hepatitis 0.437 0.421 41.179 0.843 0.446 0.431 42.194 0.863
Iris 0.330 0.244 32.747 0.732 0.105 0.153 17.576 0.461
Liver 0.359 0.339 31.778 0.678 0.380 0.356 33.296 0.712
Wine 0.263 0.168 22.186 0.506 0.273 0.178 23.637 0.535

two good genes, it may be possible to get good SpikeProp
algorithm by merging (hybridizing) two good techniques.
Therefore, this paper is concerned about the merging imple-
mentation of Model 1 and Model 2 (to get Model 3) as
maintained in Figure 2.

In this section, we hybridize Model 1: PSO-SpikeProp
and Model 2: SpikeProp with angle driven dependency to
obtain a better performance for error rates (MSE, RMSE,
MAPE, and MAD). We notice that the performance mea-
surement is better than in the previous proposed method
when the hybridization takes place as shown in Table 6.
The experiments are based on 10 independent runs for the
training and testing for all datasets, respectively. The results
have revealed that generalization of error rates in RMSE
is better for BTX, Wine, Diabetes, Iris, and Heart datasets
and the least competitive for Breast Cancer, Hepatitis, Liver,
and XOR datasets. Similarly, the result of MSE error rate
has been demonstrated to be less better for Diabetes, Heart,
Wine, Iris, Breast Cancer, Liver, Hepatitis, and BTX datasets,
respectively. To get better performance, we hybridizedModel
1 and Model 2, to get Model 3, to minimize the error to reach
the optimum error value.

4.6. Analysis and Result for Proposed Methods Based on Error.
In this section, the spiking neural network and SpikeProp
use the encoding by depending on the timing of spike,
where the first spike has a higher weight than the last one.
Since a biological neuron uses few milliseconds to process
information data, only few spikes are required and emitted,
however the few first spikes with highest value information

can contribute to all process learning, as we used Gaussian
function for encoding. Figures 3–10 show the convergence
of the error and the number of iterations of the Spikeprop
standard and the proposedmethods for the improved SpikeP-
rop in the classification Liver dataset, Breast Cancer, BTX,
Diabetes, Heart, Hepatitis, Iris, andWine data problems.The
SpikeProp standard configuration had a much slower rate of
convergence, as can be clearly seen in the plot. Although its
rate of progress gradually slow down from the beginning till
last iteration but kept in high error in the MSE, despite this
slowdown in all data problems as shown in Figures 3–10.

4.6.1. Analysis Error and Iterations of Model 1 (PSO-SpikeP-
rop). We also see from the convergence that the proposed
method for improved SpikeProp ismuch better than standard
SpikeProp as PSO-SpikeProp (Model 1) had dramatic slow-
down from the first 10 iterations down to iteration number
40, and afterwards the plot got a slight slowdown in Liver as
shown in Figure 3. In Breast Cancer data problem in Figure 4
the curve steps down at the start in error near to 0.5 until
0.38 exactly and then it continued descending to the last itera-
tion at error 0.35 gradually. PSO-SpikeProp (model 1) is the
first model from the proposed methods; the error turned
down quickly in the first 10 iterations at 1.78 and continued
to drop down till the last iteration in the error 1.27 in the
BTX data problem as seen in Figure 5. Also in Diabetes data
problem in Figure 6 the curve for the error steps down so
fast in the first 10 iterations from 0.7 till 0.39 error and then
continues to drop in a steady way until iteration number 86 of
error 0.24. From the iteration number 87 till the last iteration
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it was a little sloped and stopped at the last iteration in error
0.24.

As we can see from Figure 7 in Heart problem the curve
in error has dropped in a dramatic manner in the first 15
iterations in error from 0.45 to 0.28, and then the dropping
is slowed down till iteration number 67 in error 0.28 and
continued steadily till the last iteration for the same error.
From the same proposed model in Hepatitis data problem
in Figure 8 we can see that the slope of the curve starts at
the first 15 iterations in a fast way in error 0.76 to 0.49, and
then it slows down till iteration number 38 in error 0.48 and
it stays likely stable till the last iteration. In Iris data problem
in this model the plot from Figure 9 is stepped down in very
fast drop from the first 10 iterations in error 1.105, and then it is
zigzagged in error range 0.433 to 0.410 till iterationnumber 90
and then immediately fell down till the iteration number 112
in error 0.351 and it stayed on it till last iteration. Finally the
plot of the error is stepped down in a high manner in the first

15 iterations of error 0.534 to 0.312, and then it stabilized in
this error till the last iteration inWine data problem as shown
in Figure 10. From thismodel we have seen from Figures 3–10
how to obtain the list error from list iteration number from
the whole data sets.

4.6.2. Analysis Error and Iterations of Model 2. In the second
improvement for SpikeProp through the learning rate angle
driven dependency (Model 2), we can also notice in Liver data
problem as shown in Figure 3 that it has a slight dropping for
the first 10 iterations in error around 0.75 and got a huge fall
down till iteration number 50 for the error of nearly 0.55 and
then it had a slight dropping till last iteration for the error
0.4. In the same model in Breast Cancer problem in Figure 4,
the plot started to fall down on the first 20 iterations in error
0.57 until 0.47 gradually. Also the curve in BTX data problem
as shown in Figure 5 start dropping down from the first 5
iterations in error 1.73 to 1.72, and it is fluctuated between the
6th iteration and iteration number 197 of the error range 1.73
to 1.31. Afterwards it has a steady drop till iteration 250 at error
interval 1.30 to 1.25. From the result in Diabetes problem at
the same Model 2 on the plot in Figure 6, the error in first
seven iterations has dropped down slowly at error 0.47; after
that it stepped down quickly till iteration number 20 in error
0.35 and then continued steadily until the last iteration for
error 0.24. In the Heart data problem from Figure 7, the plot
is stepped down from first iteration in error 0.45 until last
iteration in error 0.36, and in some iterations, it is stable and
then it continues descending. Also in Hepatitis data problem
as shown in Figure 8, it has a stable error of 0.786 for the first
5 iterations, and then it start to fall down till iteration number
80 for error 0.549; after that it has a slower dropping till last
iteration on error 0.523 in a sequence stepping down.

From Figure 9 as we can see clearly the curve is dropped
down slowly in first 10 iterations in error 1.111 till 1.040; then
it accelerates in dropping till iteration number 55 of error
0.53 and the drop slows down till last iteration in 0.438 error
in the Iris data problem. Finally from Figure 10 in Wine
data problem the plot shows Model 2 (learning rate angle
driven dependency) is almost steady in first 15 iterations in
error 0.538 to 0.526, and then the dropping got accelerated
continuously till last iteration for error 0.366.

4.6.3. Analysis Error and Iterations of Model 3 (SpikeProp with
Angle Driven Dependency (𝜇)). (PSOSpikeProp and Learn-
ing Rate Angle Driven Dependency) or (model 3), in Liver
dataset as it is clear from Figure 3 the plot it provides the
best enhancement result for the convergence of error and
number of iteration. The slant starts from the first iteration
in the error a bit less than 0.8 till iteration number 20
impressively, and then a gradual descending has been done
till last iteration of error close to 0.354. The curve from
Figure 5 witnessed a dramatic drop in first 10 iterations start-
ing from error 1.95 and the drop decreases till last iteration
at error 0.97. We can notice from the curves in Figure 4 that
the last model is much better from the SpikeProp standard
and the previous methods of Breast Cancer dataset problem.
The error steps down in a steady and fast manner from
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Table 7: Result of training in terms of accuracy.

Training
SpikeProp Model 1 Model 2 Model 3 BP

Breast cancer 50.36 63.82 54.88 60.9 33.68
BTX 73.75 76.69 75.7 77.01 42.19
Diabetes 22.68 50.97 49.64 52.3 14.81
Heart 25.04 43.69 34.69 42.24 13.17
Hepatitis 8.21 21.38 17.57 22.23 2.44
Iris 57.68 72.27 68.22 73.22 32.79
Liver 4.86 31.97 24.01 29.3 2.14
Wine 56.03 70.47 67.57 70.36 35.78

Table 8: Result of testing in terms of accuracy.

Testing
SpikeProp Model 1 Model 2 Model 5 BP

Breast cancer 48.82 62.7 53.46 63.28 32.21
BTX 60.52 71.15 70.42 73.57 41.77
Diabetes 25.99 44.45 43.31 50.8 18
Heart 32.81 45.4 38.56 51.81 14.64
Hepatitis 8.78 18.42 16.5 23.65 4.33
Iris 77.66 84.66 80.73 96.03 50.03
Liver 8.55 28.55 20.48 28.79 2.8
Wine 56.84 70.53 67.53 73.24 40.13

the first iteration of error 1.93 to last iteration of error 0.97.
From this we can see thatmost impact on SpikeProp standard
is from PSO-SpikeProp and the leaning rate methods, and
other proposed methods have less impact on BTX data
problem as shown in Figure 5.

From the plot in Figure 6, this model started to drop
down in a very fast way in first 10 iterations for error 0.7
to error 0.24, and then it started to slow down till iteration
number 43 in error 0.21, and then it became almost stopped in
error 0.21 till last iteration; we conclude from the comparison
of the previous result that the model 3 gives the best and the
least error from all othermethods inDiabetes dataset.We can
see from the plot that the curve fell down quickly in first 10
iterations for error range 0.45 to 0.29, and then the dropping
started to slow down till iteration number 30 in error 0.258,
then it got almost steady till last iteration in error 0.252. From
the previous it is obvious that this model is the best among all
the other models for Heart data problem as seen in Figure 7.
This merge (Model 3) starts to drop down quickly from the
first iteration for the error 0.787 until iteration number 30 for
error 0.438, and then it stays stable until last iteration, as it
is obvious from Figure 8 and the results that the third model
has the most impact on SpikeProp compared to the previous
models for Hepatitis data problem. Finally from Figure 9 it
can be seen that the plot in this merge model started to step
down quickly in first 30 iterations in error 1.107 to 0.332 and
then it got steady for the same error till last iteration.This can
show that the third model of improving SpikeProp gives the
best result compared to other previous methods in Iris data
problem.

Lastly, Model 3 is merging between Model 1 and Model
2 (PSO-SpikeProp and learning rate angle driven depen-
dency); this merging model has a high impact on enhancing
SpikeProp as it is seen in the curve of Figure 10 that in Wine
data problem the slope is dropped quickly starting from first
iteration of error 0.533 till iteration number 70 of error 0.263
and then it becomes almost stable till last iteration.

4.7. Result and Analysis Comparison of the Proposed Meth-
ods in Terms of Accuracy. This section displays the result
of SpikeProp standard besides the proposed methods for
enhanced SpikeProp measured in terms of accuracy. The
experiments are run 10 s, 10 dependent runs on training
and testing for all datasets, respectively (refer to Tables 7
and 8 and Figures 11 and 12). As it is shown in Table 7 for
training, the first proposed method PSO-SpikeProp (Model
1) is evaluated in terms of accuracy; we can see that we got
the value in Breast Cancer better than SpikeProp standard
and proposed methods except Model 5. Regarding the BTX
dataset problem, it is also better than SpikeProp standard and
other proposed methods except Model 3. The generalization
of accuracy for the proposed method PSOSpikeProp is better
than SpikeProp standard and learning rate angle driven
dependency (Model 2) in all datasets. Learning rate angle
driven dependency is our proposed method; it is better than
SpikeProp standard in all datasets. Finally,Model 3 ismerging
model (PSO-SpikeProp and Learning Rate Angle Driven
Dependency) as illustrated in Figure 11 and Table 7 that it is
better in accuracy generalization from all proposed methods
and SpikeProp standard in all datasets.
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Figure 11: Results in training of the proposed methods in terms of
accuracy.

10
20
30
40
50
60
70
80
90

100

SpikeProp
Model 1
Model 2

Model 3

Dataset

Bp

Br
ea

st 
Ca

nc
er

Ac
cu

ra
cy

BT
X

D
ia

be
te

s

H
ea

rt

H
ep

at
iti

s

Ir
is

Li
ve

r

W
in

e

Figure 12: Results in testing of the proposed methods in terms of
accuracy.

5. Conclusions

We introduced several extensions to the SpikeProp learn-
ing algorithm that make it possible to learn not only the
weights, but also the delays and synaptic time constants of
the connections and the thresholds of the neurons. Due to
these enhancements, smaller network architecture can be
used. This is mainly due to the fact that delays can now
be trained and need not be enumerated. The simple 8 data
sets could be solved with the same precision as the original
SpikeProp algorithm, less errors (making the simulation and
learning phase of the network much faster), and an increased
learning convergence. There are several proposed models
needed to improve the performance of SpikeProp further;
hybridization of two or more good architectures is carried

out (for instance the hybridization of Model 1 andModel 2 to
obtain Model 3). The purpose of hybridization is to leverage
the best function from each component of the hybrid. As
an example, Model 3 is the hybridization of Model 1 which
is PSO-SpikeProp (enhancement Spikeprop architecture by
PSO) with Model 2 which is SpikeProp enhancement using
angle driven dependency learning rate. For Model 3, when
the position of search is far from the optimum, PSO is used
to directly move the point of search close to the optimum.
When the search point is close to the optimum, Model
3 switches over to the system where there is SpikeProp
enhancement using angle driven dependency learning rate to
reach the optimum position. Also a thorough analysis of the
weight initialization problem is required. The convergence
rate seems to be pretty sensitive to this. Several techniques
used in classic neural networks to speed up backpropagation
learning could be added to SpikeProp to further speed up
learning.
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