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ABSTRACT 

 

 

 

 

Oil and gas pipeline operation is one of the highest risk systems in the industry. Any 

failure of the system will cause a huge impact to the environment and economy. The 

integrity assessment of the oil and gas pipelines in Malaysia has been focused and 

discussed long time ago. Formerly, the inspection and maintenance work has been 

made in a certain interval time in order to ensure the integrity of pipelines. Therefore, 

in this study, the integrity level of the pipelines has been evaluated using the present 

in- line inspection data (ILI). Present in line inspection data (ILI), gathered from the 

pipelines operator, has been analyzed by using the statistical approach to obtain the 

corrosion growth rate. Then using the probabilistic approach is used to predict the 

future corrosion rate. Finally, the present and predicted data was used in the DNV RP 

F101 code in order to determine the pipeline integrity. The results show that the 

pipeline is in a good condition for the next 19 years since from the first inspection. As 

a conclusion, there is no remedial work suggested to be commenced and as a 

recommendation the inspection interval can be extended longer in order to reduce the 

inspection cost.    

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ABSTRAK 

 

 

 

 

Operasi penyaluran paip minyak dan gas adalah satu sistem berisiko tinggi. Sebarang 

kegagalan pada sistem tersebut akan memberi impak yang besar kepada alam sekitar 

dan ekonomi. Penilaian terhadap tahap keutuhan saluran paip minyak dan gas di 

Malaysia telah mendapat perhatian sejak sekian lama. Secara kebiasaannya, kerja-

kerja pemeriksaan dan penyelengaraan dibuat secara berkala bagi memastikan saluran 

paip yang sedia ada berada di tahap yang optimum semasa beroperasi. Oleh itu, di 

dalam kajian ini, tahap keutuhan saluran paip minyak tersebut akan dinilai 

berdasarkan kepada data semasa. Data asas semasa dari alat pemeriksaan dalaman 

(ILI) yang diperolehi dari operator saluran paip minyak dan gas dianalisa 

menggunakan konsep statistik bagi mendapatkan kadar pertumbuhan hakisan yang 

berlaku. Seterusnya berdasarkan data semasa, konsep kebarangkalian digunakan 

dalam membuat jangkaan kadar hakisan pada masa hadapan. Setelah itu, kadar 

hakisan semasa dan kadar hakisan jangkaan tersebut dinilai berdasarkan kod DNV RP 

F101 bagi mengenal pasti tahap keutuhan saluran paip tersebut. Hasil daripada kajian 

ini menunjukkan bahawa, tahap keutuhan saluran paip tersebut berada di tahap yang 

baik untuk jangka masa 19 tahun dari tahun pemeriksaan yang pertama dibuat. 

Sebagai kesimpulan, tiada kerja-kerja penyelengaraan perlu dilaksanakan dan 

dicadangkan sela masa pemeriksaan boleh dipanjangkan dan secara tidak langsung 

dapat menjimatkan kos pemeriksaan. 
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CHAPTER I 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.0 GENERAL 

 

 

Offshore pipeline transport enormous quantities of oil and gas vital to the 

economic of virtually all nations. Therefore the exploration and production of oil and 

gases form adverse or hostile environments and from marginal field is becoming 

increasing important to ensure a continuous and independent energy supply. 

Production of oil and gas from sea bottoms, performed from stationary platform has 

gained wide development. Most of the sub sea oil and gas fields that been developed, 

or are under development, are marginal with a production life time between 5 and 15 

years (Martinussen, E. 1995).  

 

Due to the effort of providing an over all energy supply, more oil and gas 

pipelines for the primary energy were supplies. Thus several damages occurred in 

such pipelines, caused by the formation of cracks extending over long distances. Any 

failure to ensure safe and continuous operation of these pipelines can have serious 

economic implications, possibly damage the environment and cause fatalities. A 

prerequisite to pipeline safe operation is to ensure their structural integrity to a high 

level of reliability throughout their operational lives. 

 

 

 



1.1 PROBLEM STATEMENT  

 

Cross-country of submarine pipelines are the most energy-efficient, safe, 

environmentally friendly, and economic way to ship hydrocarbons (gas, crude oil, and 

finished products) over long distances, either within the geographical boundary of a 

country or beyond it. A significant portion of many nations' energy requirements is 

now transported through pipelines. The economies of many countries depend on the 

smooth and uninterrupted operation of these lines, so it is increasingly important to 

ensure the safe and failure- free operation of pipelines. 

 

While pipelines are one of the safest modes of transporting bulk energy, and 

have failure rates much lower than the railroads or highway transportation, failures do 

occur, and sometimes with catastrophic consequences. A number of pipelines have 

failed in the recent past, with tragic consequences. In 1993, in Venezuela, 51 people 

were burnt to death when a gas pipeline failed and the escaping gas ignited. Again in 

1994, a 36-inch (914 mm) pipeline in New Jersey failed, resulting in the death of one 

person and more than 50 injuries. Similar failures also have occurred in the UK, 

Russia, Canada, Pakistan, and India (Hopkins, 1994). While pipeline failure rarely 

causes fatalities, disruptions in operation lead to large business losses. Failures can be 

very expensive and cause considerable damage to the environment. 

 

In practice, various techniques are routinely used to monitor the status of a 

pipeline. Any deterioration in the line may cause a leak or rupture. Modern 

methodologies can ensure the structural integrity of an operating pipeline without 

taking it out of service (Jamieson, 1986). The existing inspection and maintenance 

practices commonly followed by most pipeline operators are formulated mainly on 

the basis of experience. However, operators are developing an organized maintenance 

policy based on data analysis and other in-house studies to replace rule-of-thumb 

based policies. The primary reasons for this are stringent environmental protection 

laws (US Department of Transportation, 1995), scarce resources, and excessive 



inspection costs. Existing policies are not sharply focused from the point of view of 

the greatest damage/defect risk to a pipeline. The basis for selecting health monitoring 

and inspection techniques is not very clear to many operators. In many cases, a survey 

is conducted over an entire pipeline or on a particular segment, when another segment 

needs it more. Avoidable expenditures are thus incurred. 

 

A strong reason exists, therefore, to derive a technique that will help pipeline 

operators select the right type of inspection/monitoring technique for segments that 

need it. A more clearly focused inspection and maintenance policy that has a low 

investment-to-benefit ratio should be formulated. The purpose of this study is to 

highlight the pipeline integrity assessment process in order to maintain safe pipelines 

operations.  

 

The existing method of pipeline health monitoring, which requires an entire 

pipeline to be inspected periodically, is both time-wasting and expensive. A risk-

based model that reduces the amount of time spent on inspection has been presented. 

This model not only reduces the cost of maintaining petroleum pipelines, but also 

suggests efficient operation philosophy, construction methodology and logical 

insurances plans. Besides, use of probabilistic approaches to evaluate the integrity of 

corroding pipelines is beneficial because the uncertainties associated with in- line-

inspection tools, corrosion rate, pipeline geometry, material properties, and operating 

pressure can be modelled and considered over any chosen time period.  

 

 

 

 

 



1.2 OBJECTIVES OF THE STUDY 

 

 

The objectives of this study are as follows: - 

 

1. To estimate the corrosion rate (Cr) from the in- line inspection (ILI) 

data.  

 

2. To evaluate the current and future integrity of corroded pipelines by 

using a probabilistic simulation approach.  

 

 

 

 

1.3 SCOPE OF STUDY 

 

  

 The scope of study will be using the ILI data for the corroded pipeline 

provided by the pipeline operator. The corrosion rate has been determined by using 

statistical and probability analysis method and for the integrity assessment the 

provided ILI data has been analyzing by using the DNV RP F101 code.  

 

 

 

 

1.4 STUDY METHODOLOGY   

 

 

To support the study, a comprehensive literature review has been done on the 

corroded pipeline including the corrosion process, in line inspection tools and the 

assessment method. Besides, the DNV RP F101 code has been focus in detail study in 

order to achieve the objectives.  

 

 




