INTEGRITY ASSESSMENT OF CORRODED PIPELINE USING IN-LINE INSPECTION DATA

MOHD AZNAN SHUKRI BIN MOHAMED SAFIAN

A thesis submitted in partial fulfillment of the requirements for the award of the Degree of Master of Engineering (Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JULY 2006

DEDICATION

Special fanatical to my Mother and Father

Puan Puteh Zaliha Binti Yaacob Encik Mohamed Safian Bin Omar

And

My beloved Brother and Sister in law

Abang Long and Kak Long

No word can describe the gratitude for both of you

Besides

Family in all around Malaysia

Thank for the past or present sustain And Shoulder to shoulder support

.....*This is for us!!!*.....

Unforgettable

Ainul Mardhiah

This thesis is dedicated to you who do not suffer from the uncertainties

ACKNOWLEDGEMENT

Praise to **Allah s.w.t**, the Al Mighty, the Most Merciful for all the blessing and guidance upon me throughout this study.

While the motivation and hard work in pursuing a master's degree must come from within, interactions with others have stimulated and sustained me both professionally and personally during my research career. I want to acknowledge many people whose professionally help and personal support has made it possible for me to complete this thesis. My heart felt deepest gratitude goes to **Associate Professor Dr. Nordin Yahaya**, my thesis supervisor, for all the assistance, knowledge and help during the thesis syllabus.

My special thanks go to **Dr. Norhazilan Bin Md Noor** from Universiti Teknologi Malaysia, Structural Engineering Department, for his support and cooperation during the thesis research. Extended special appreciation to **Mr. Mohd Nazir Bin Haji Mohd Noor** from PETRONAS Gas Berhad for the useful information in the offshore pipeline system. Besides a specific thanks to my fellow master students for their support and great friendship.

Finally, my express is going to my family for their continuous love and support throughout my life.

ABSTRACT

Oil and gas pipeline operation is one of the highest risk systems in the industry. Any failure of the system will cause a huge impact to the environment and economy. The integrity assessment of the oil and gas pipelines in Malaysia has been focused and discussed long time ago. Formerly, the inspection and maintenance work has been made in a certain interval time in order to ensure the integrity of pipelines. Therefore, in this study, the integrity level of the pipelines has been evaluated using the present in-line inspection data (ILI). Present in line inspection data (ILI), gathered from the pipelines operator, has been analyzed by using the statistical approach to obtain the corrosion growth rate. Then using the probabilistic approach is used to predict the future corrosion rate. Finally, the present and predicted data was used in the DNV RP F101 code in order to determine the pipeline integrity. The results show that the pipeline is in a good condition for the next 19 years since from the first inspection. As a conclusion, there is no remedial work suggested to be commenced and as a recommendation the inspection interval can be extended longer in order to reduce the inspection cost.

ABSTRAK

Operasi penyaluran paip minyak dan gas adalah satu sistem berisiko tinggi. Sebarang kegagalan pada sistem tersebut akan memberi impak yang besar kepada alam sekitar dan ekonomi. Penilaian terhadap tahap keutuhan saluran paip minyak dan gas di Malaysia telah mendapat perhatian sejak sekian lama. Secara kebiasaannya, kerjakerja pemeriksaan dan penyelengaraan dibuat secara berkala bagi memastikan saluran paip yang sedia ada berada di tahap yang optimum semasa beroperasi. Oleh itu, di dalam kajian ini, tahap keutuhan saluran paip minyak tersebut akan dinilai berdasarkan kepada data semasa. Data asas semasa dari alat pemeriksaan dalaman (ILI) yang diperolehi dari operator saluran paip minyak dan gas dianalisa menggunakan konsep statistik bagi mendapatkan kadar pertumbuhan hakisan yang berlaku. Seterusnya berdasarkan data semasa, konsep kebarangkalian digunakan dalam membuat jangkaan kadar hakisan pada masa hadapan. Setelah itu, kadar hakisan semasa dan kadar hakisan jangkaan tersebut dinilai berdasarkan kod DNV RP F101 bagi mengenal pasti tahap keutuhan saluran paip tersebut. Hasil daripada kajian ini menunjukkan bahawa, tahap keutuhan saluran paip tersebut berada di tahap yang baik untuk jangka masa 19 tahun dari tahun pemeriksaan yang pertama dibuat. Sebagai kesimpulan, tiada kerja-kerja penyelengaraan perlu dilaksanakan dan dicadangkan sela masa pemeriksaan boleh dipanjangkan dan secara tidak langsung dapat menjimatkan kos pemeriksaan.

LIST OF CONTENTS

CHAPTER TITLE

PAGE

DECLARATION	ii
DEDICATION	viii
ACKNOWLEDGEMENTS	ix
ABSTRACT	X
ABSTRAK	xi
LIST OF CONTENTS	xii
LIST OF TABLES	xvii
LIST OF FIGURES	xviii
NOMENTCLATURES	xxi

CHAPTER I INTRODUCTION

1.0 General	1
1.1 Problems Statement	2
1.2 Objectives of Study	4
1.3 Scope of Study	4
1.4 Study Methodology	4

CHAPTER II LITERATURE REVIEW

2.0 Introduction	5
2.1 Oil Exploration Review in Malaysia	5
2.2 Natural Gas Production Background	
in Malaysia	8
2.3 Pipelines Failures	10
2.4 Corrosion Fundamental	12
2.5 Corrosion of Oil and Gas Pipelines	13
2.5.1 Sweet Corrosion	13
2.5.2 Sour Corrosion	15
2.6 Pipelines Corrosion Protection	16
2.6.1 Material Selection	16
2.6.1.1 Environmental Modification	17
2.6.1.2 Coatings and Linings	18
2.6.1.3 Cathodic Protection (CP)	19
2.7 Pipelines Inspection Methods	20
2.7.1 Direct Assessment – Internal and	
External	21
2.7.2 The ICDA/ECDA Toolbox	22
2.7.2.1 Magnetic Flux Leakage (MFL)	23
2.7.2.2 Hydrotest	24
2.7.2.3 Pipelines Current Mapper (PCM	I) 25
2.7.2.4 Direct Current Voltage	
Gradient (DCVG)	26
2.7.2.5 Close Interval Survey (CIS)	27
2.7.2.6 Soil Resistivity	28
2.7.2.7 Soil PH	29
2.8 Oil and Gas Pipelines Integrity	29
2.8.1 Pipelines Assessment Approach	31
2.8.1.1 Probabilistic or Reliability	
Method	31
2.8.1.2 Risk Assessment	32

2.8.2 Deterministic Method	34
2.8.2.1 ASME B31G	34
2.8.2.2 DNV RP F101	35
2.8.3 Numerical Method	35
2.8.3.1 Finite Element Method (FEM)	35

CHAPTER III FUNDAMENTALS OF RELIABILITY METHOD

3.0 Introduction	38
3.1 Concept of Reliability Evaluation	38
3.2 Continous Probability Distribution	40
3.3 Normal Distribution	42
3.4 Parameter Estimator	43
3.41 Probability Plotting	44
3.5 Reliability Method	46
3.5.1 Morte Carlo Simulation	47
3.5.2 Simulation Procedure	47
3.5.2.1 Generation of Pseudo Number	48
3.5.2.2 Generation of Random Variables	49

CHAPTER IV DETERMINISTIC ASSESSMENT FUNDAMENTAL

4.0 Introduction	53
4.1 Type of Defect	53
4.2 ASME B31G Criterion	54
4.2.1 Original ASME B31G Equation	55
4.2.2 Modified ASME B31G Criterion	
@ RSTRENG	58
4.3 DNV RP F101	61
4.3.1 DNV RP F101 Criteria	62

4.3.2 DNV RP F101 Equation	63
4.3.2.1 DNV RP F101 Capacity Equation	63
4.3.2.2 DNV RP F101 Partial Safety	
Factor	64

CHAPTER V STUDY METHODOLOGY

5.0 Introduction	66
5.1 Study Methodology Summarize	66
5.2 ILI Data Gathering	67
5.3 Statistical Analysis	69
5.3.1 Quality of Sampling	69
5.3.2 Corrosion Dimension Analysis	70
5.3.3 Corrosion Growth Rate	70
5.4 Probability Analysis	71
5.4.1 Construction of the Histogram	71
5.5 Prediction of Corrosion Growth	75
5.5.1 Random Consistent Model	75
5.5.2 Random Inconsistent Model	78
5.6 Failure Model	80
5.6.1 Failure Model According to	
DNV RP F101	80
5.7 Graph Plotting	82
5.8 Critical Study	82

CHAPTER VI RESULTS AND ANALYSIS

6.0 Introduction	83
6.1 Comparison between Semi Random and	
Random Corrosion Rate Prediction	83

6.2 Analysis on Consistent Random Predicted	
Corrosion Rate	87
6.3 Analysis on Inconsistent Random Predicted	
Corrosion Rate	91

CHAPTER VII CONCLUSION AND RECOMMENDATIONS

7.0 Introduction	94
7.1 Conclusion	94
7.2 Recommendations	95

LIST OF TABLES

LIST TITLE

PAGE

Table 4.1	Standard deviation, StD [d/t], for MFL inspection tool	64
Table 4.2	Partial safety factor, γ_m for MFL inspection tool	65
Table 4.3	Partial safety factor, γ_d and fractile value factor, ϵ_d	65
Table 5.1	A typical presentation of pigging data	68
Table 5.2	Frequency table of corrosion depth, d, between year	
	1990 and 1992	74
Table 5.3	Frequency table of corrosion depth, d, between year	
	1992 and 1995	75

LIST OF FIGURES

LIST TITLE

PAGE

Figure 2.1	Malaysia oil productions and consumption between	
	year 1980 and year 2004	6
Figure 2.2	Malaysia natural gas productions and consumption	
	between year 1980 and year 2002	8
Figure 2.3	Pipeline failure due to the corrosion attack	11
Figure 2.4	Pipeline coated technique	19
Figure 2.5	Cathodic protection system	20
Figure 2.6	Numerous corrosion assessment tools	23
Figure 2.7	Magnetic Flux Leakage Tools	24
Figure 2.8	Pipeline Current Mapper (PCM)	25
Figure 2.9	Direct Current Voltage Gradient (DCVG)	26
Figure 2.10	Close Interval Survey tools	27
Figure 2.11	Soil Resistivity tools	28
Figure 2.12	Soil pH tools	29
Figure 2.13	Finite Element 3-dimensional analysis	36
Figure 3.1	Relationship between load and resistance	39
Figure 3.2	Inverse transformation method	49
Figure 4.1	Classes of blunt corrosion defects	54
Figure 4.2	A, projected area of the defect in the longitudinal plane	
	through the wall thickness represented by a rectangular	
	according to original ASME B31G.	56
Figure 4.3	A, projected area of the defect in the longitudinal plane	
	through the wall thickness represented by a parabola	

	according to Modified ASME B31G @ RSTRENG.	59
Figure 5.1	Methodology chart	67
Figure 5.2	Histogram for corrosion rate between year 1990 and 1992	72
Figure 5.3	Histogram for corrosion rate between year 1992 and 1995	72
Figure 5.4	Normal distribution for corrosion growth rate between	
	year 1990 and 1992	73
Figure 5.5	Normal distribution for corrosion growth rate between	
	year 1992 and 1995	73
Figure 5.6	Predicted corrosion depth for year 1995, 2000, 2005	
	and 2010 by using Random Consistent Model	77
Figure 5.7	Predicted corrosion length for year 1995, 2000, 2005	
	and 2010 by using Random Consistent Model	77
Figure 5.8	Predicted corrosion depth for year 1995, 2000, 2005	
	and 2010 by using Random Inconsistent Model	79
Figure 5.9	Predicted corrosion depth for year 1995, 2000, 2005	
	and 2010 by using Random Inconsistent Model	79
Figure 6.1	Graph plot for Random Consistent and Random Inconsistent	
	corrosion rate growth for the predicted year	84
Figure 6.2	Depth distribution for every predicted year by using Random	
	Consistent Model	85
Figure 6.3	Depth distribution for every predicted year by using Random	
	Inconsistent Model	86
Figure 6.4	Length distribution for every predicted year by using Random	
	Consistent Model	86
Figure 6.5	Length distribution for every predicted year by using Random	
	Inconsistent Model	87
Figure 6.6	Defect sizes for year 1995 by using Random Consistent	
	simulation based on the acceptance line	88
Figure 6.7	Defect sizes for year 2000 by using Random Consistent	
	simulation based on the acceptance line	89
Figure 6.8	Defect sizes for year 2005 by using Random Consistent	
	simulation based on the acceptance line	89
Figure 6.9	Defect sizes for year 2010 by using Random Consistent	
	simulation based on the acceptance line	90

Figure 6.10	Defect sizes for every predicted years by using Semi Random	
	simulation based on the acceptance line	90
Figure 6.11	Defect sizes for year 1995 by using Random Inconsistent	
	simulation based on the acceptance line	91
Figure 6.12	Defect sizes for year 2000 by using Random Inconsistent	
	simulation based on the acceptance line	92
Figure 6.13	Defect sizes for year 2005 by using Random Inconsistent	
	simulation based on the acceptance line	92
Figure 6.14	Defect sizes for year 2010 by using Random Inconsistent	
	simulation based on the acceptance line	93
Figure 6.15	Defect sizes for every predicted years by using Random	
	Inconsistent simulation based on the acceptance line	93

NOMENCLATURES

G	=	limit state function.
S	=	load,
R	=	resistance/demand.
Р	=	probability.
P_f	=	failure probability.
xi	=	random variables
μχ	=	mean value
n	=	number of observation
Var(x)	=	variance
σx	=	standard deviation
COV	=	coefficient of variation
Φ	=	standard Normal probability
у	=	dependent variable
x	=	independent variable
т	=	slope
С	=	y-axis intercept
У	=	$\phi^{-1}F(x)$
x	=	x
т	=	1/σ
С	=	$-\mu/\sigma_x$
i	=	failure order (counted from 1 to the largest order)
N	=	sample sizes
<i>r</i> _i	=	random number
a,c,m	=	non-negative integers
k	=	largest non-negative integer
F(x)	=	Cumulative Distribution Function (CDF)

u	=	generated pseudo random variables (0,1)
Sp	=	hoop stress level at failure (MPa)
Sf	=	flow stress of the materials (Mpa)
Ao	=	original cross sectional area of the pipe at the defect,
		(Ao = Lt) (mm2)
A	=	projected area of the defect in the longitudinal plane through
		the wall thickness represented by a parabola, (2/3 Ld) (mm2)
M	=	Folias or bulging factor, accounting for the effect of stress
		concentration at notch
L	=	defect length of metal defect along the axis of the pipe
t	=	nominal pipeline thickness
SMYS	=	Specified Minimum Yield Strength
D	=	Outer Diameter
F	=	factor of safety (always taken as 0.72)
SMTS	=	Specified Minimum Tensile Strength
x	=	0.9, 1.0 and 1.1
$\left(\frac{d}{t}\right)$ meas	=	measured relatives corrosion depth
γm	=	partial safety factor for prediction model and safety class
γd	=	partial safety factor for corrosion depth
εd	=	factor for defining a fractile value for the corrosion depth
Pmao	=	maximum allowable operating pressure
$StD\left[\frac{d}{t}\right]$	=	standard deviation for measurement (d/t) ratio
		(based on the specification of the inspection tool)
SMTS	=	specified minimum tensile strength
$\Delta dist$	=	difference of relative distance
dist prev	=	sampling distance of previous inspection data
dist _{next}	=	sampling distance of next inspection data
$\Delta orie$	=	difference of orientation
dist prev	=	orientation of previous inspection data
dist _{next}	=	orientation of next inspection data

CR	=	corrosion rate
d_{Tl}	=	corrosion depth in year T ₁
d_{T2}	=	corrosion depth in year T ₂
T_{l}	=	years of inspection T1
T_2	=	years of inspection T2
a	=	number of bin/class
n	=	number of observation
d_{T2}	=	corrosion depth in year T ₂
L_{T2}	=	corrosion length in year T ₂
d_{pre}	=	predicted corrosion depth
d _{act}	=	actual corrosion depth
L _{pre}	=	predicted corrosion length
Lact	=	actual corrosion length
Std $[d/t]_0$	=	Standard deviation of inspection tool in first year assessment.
Std $[d/t]_T$	=	Standard deviation of inspection tool in the future.
Std $[d/t]$	=	Standard deviation of corrosion rate.
Т	=	prediction interval in year.

CHAPTER I

INTRODUCTION

1.0 GENERAL

Offshore pipeline transport enormous quantities of oil and gas vital to the economic of virtually all nations. Therefore the exploration and production of oil and gases form adverse or hostile environments and from marginal field is becoming increasing important to ensure a continuous and independent energy supply. Production of oil and gas from sea bottoms, performed from stationary platform has gained wide development. Most of the sub sea oil and gas fields that been developed, or are under development, are marginal with a production life time between 5 and 15 years (Martinussen, E. 1995).

Due to the effort of providing an over all energy supply, more oil and gas pipelines for the primary energy were supplies. Thus several damages occurred in such pipelines, caused by the formation of cracks extending over long distances. Any failure to ensure safe and continuous operation of these pipelines can have serious economic implications, possibly damage the environment and cause fatalities. A prerequisite to pipeline safe operation is to ensure their structural integrity to a high level of reliability throughout their operational lives.

1.1 PROBLEM STATEMENT

Cross-country of submarine pipelines are the most energy-efficient, safe, environmentally friendly, and economic way to ship hydrocarbons (gas, crude oil, and finished products) over long distances, either within the geographical boundary of a country or beyond it. A significant portion of many nations' energy requirements is now transported through pipelines. The economies of many countries depend on the smooth and uninterrupted operation of these lines, so it is increasingly important to ensure the safe and failure-free operation of pipelines.

While pipelines are one of the safest modes of transporting bulk energy, and have failure rates much lower than the railroads or highway transportation, failures do occur, and sometimes with catastrophic consequences. A number of pipelines have failed in the recent past, with tragic consequences. In 1993, in Venezuela, 51 people were burnt to death when a gas pipeline failed and the escaping gas ignited. Again in 1994, a 36-inch (914 mm) pipeline in New Jersey failed, resulting in the death of one person and more than 50 injuries. Similar failures also have occurred in the UK, Russia, Canada, Pakistan, and India (Hopkins, 1994). While pipeline failure rarely causes fatalities, disruptions in operation lead to large business losses. Failures can be very expensive and cause considerable damage to the environment.

In practice, various techniques are routinely used to monitor the status of a pipeline. Any deterioration in the line may cause a leak or rupture. Modern methodologies can ensure the structural integrity of an operating pipeline without taking it out of service (Jamieson, 1986). The existing inspection and maintenance practices commonly followed by most pipeline operators are formulated mainly on the basis of experience. However, operators are developing an organized maintenance policy based on data analysis and other in-house studies to replace rule-of-thumb based policies. The primary reasons for this are stringent environmental protection laws (US Department of Transportation, 1995), scarce resources, and excessive

inspection costs. Existing policies are not sharply focused from the point of view of the greatest damage/defect risk to a pipeline. The basis for selecting health monitoring and inspection techniques is not very clear to many operators. In many cases, a survey is conducted over an entire pipeline or on a particular segment, when another segment needs it more. Avoidable expenditures are thus incurred.

A strong reason exists, therefore, to derive a technique that will help pipeline operators select the right type of inspection/monitoring technique for segments that need it. A more clearly focused inspection and maintenance policy that has a low investment-to-benefit ratio should be formulated. The purpose of this study is to highlight the pipeline integrity assessment process in order to maintain safe pipelines operations.

The existing method of pipeline health monitoring, which requires an entire pipeline to be inspected periodically, is both time-wasting and expensive. A riskbased model that reduces the amount of time spent on inspection has been presented. This model not only reduces the cost of maintaining petroleum pipelines, but also suggests efficient operation philosophy, construction methodology and logical insurances plans. Besides, use of probabilistic approaches to evaluate the integrity of corroding pipelines is beneficial because the uncertainties associated with in-lineinspection tools, corrosion rate, pipeline geometry, material properties, and operating pressure can be modelled and considered over any chosen time period.

1.2 OBJECTIVES OF THE STUDY

The objectives of this study are as follows: -

- 1. To estimate the corrosion rate (Cr) from the in-line inspection (ILI) data.
- 2. To evaluate the current and future integrity of corroded pipelines by using a probabilistic simulation approach.

1.3 SCOPE OF STUDY

The scope of study will be using the ILI data for the corroded pipeline provided by the pipeline operator. The corrosion rate has been determined by using statistical and probability analysis method and for the integrity assessment the provided ILI data has been analyzing by using the DNV RP F101 code.

1.4 STUDY METHODOLOGY

To support the study, a comprehensive literature review has been done on the corroded pipeline including the corrosion process, in line inspection tools and the assessment method. Besides, the DNV RP F101 code has been focus in detail study in order to achieve the objectives.