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ABSTRACT 

 

 

 

 

Compound selection method is important in drug discovery especially in lead 

identification process. Finding the best method in the compound selection has become a 

need to pharmaceutical chemistry because of the increasing number of chemical 

compound to be screened. One of the best and widely used methods in compound 

selection is cluster-based selection where the compound datasets are grouped into 

clusters and representative compounds are selected from each cluster. Among all fuzzy 

clustering method, fuzzy c-means using Euclidean Distance measures is better used in 

compound selection. Fuzzy c-means clustering gives the best result in intermolecular 

dissimilarity; however it shows poor results of separation of active/inactive structure. 

The research focused on the subtractive clustering where the effectiveness of the clusters 

produced with regard to compound selection is analyzed and compared with other 

conventional cluster-based compound selection method. Subtractive clustering has been 

chosen because it considers each data point as a potential cluster center and defines a 

measure of the potential of data point and it also resolves the problem of how many 

clusters need to be taken for the data. Subtractive clustering will produce the number of 

cluster automatically together with the value of radii cluster and squash factor. The 

results from subtractive clustering are compared to fuzzy c-means method and K-means. 

The analysis shows that subtractive clustering gives the worst result in separation of 

active/inactive structure among the fuzzy c-means and K-means. K-means produced the 

highest proportion of active structure in this research. For subtractive clustering, good 

values of squash factor are between 0.375 and 0.45 and the radii cluster from 0.35 to 

0.45 because they always hit the highest proportion of active structures. 
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ABSTRAK  

 

 

 

 

Kaedah pemilihan sebatian merupakan kaedah yang penting dalam penemuan 

ubat, terutamanya dalam proses pengenalpastian molekul yang berpotensi untuk 

dijadikan ubat. Penyelidikan untuk mencari kaedah yang terbaik bagi pemilihan sebatian 

telah menjadi satu keperluan industri farmasi berikut peningkatan jumlah sebatian yang 

perlu ditapis. Kaedah yang terbaik dan kerap digunakan di dalam pemilihan sebatian 

ialah kaedah pengkelompokan; di mana set-set data sebatian dikumpulkan dalam 

kelompok masing-masing dan wakil daripada setiap kelompok akan dipilih. Kaedah 

fuzzy c-means menghasilkan kelompok yang baik dengan mengenalpasti titik tengah 

kelompok dan darjah keahlian bagi setiap ahli di dalam kelompok. Oleh itu, satu 

sebatian mungkin berada di dalam lebih daripada satu kelompok berdasarkan kepada 

darjah keahliannya. Kajian ini menekankan subtractive clustering dan keberkesanan 

kelompok yang dihasilkan berdasarkan Topological Indixes. Hasil kaedah ini dianalisa 

dan dibandingkan dengan kaedah pengkelompokan konvensional yang lain. K-means 

merupakan kaedah yang terbaik untuk mengelompokan sebatian berbanding dengan 

kaedah subtractive clustering dan fuzzy c-means. Jejari antara 0.35 dan 0.45 serta faktor 

squash antara 0.375 dan 0.45 merupakan julat yang baik untuk menghasilkan struktur 

aktif yang tinggi di dalam kelompok berkenaan.  
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CHAPTER 1  

 

 

 

 

INTRODUCTION  

 

 

 

 

The drug design technologies have already produced a tremendous amount of 

data that requires proper methods of data analyzing. The dramatic increase of resulting 

compound data has encouraged researchers in the field to look at ways of applying 

various machine learning techniques and intelligent techniques for data analysis. The 

main reasons a compound cannot become drugs are inactive, toxicity, flexibility and size 

molecule. A main issue in analyzing chemical data is preferably to specify different 

actives and inactive into different clusters.  

 

 

In the early stages of a drug discovery project, the emphasis is on lead 

generation, in which an attempt is made to optimize the molecular diversity of the initial 

library produced.  Due to the similar property principle (Johnson and Maggiora, 1990), 

structurally similar compounds can be expected to exhibit similar properties and 

biological activities.  It is thus undesirable to test a large number of structurally similar 

compounds for many reasons.  Maximizing the diversity of a subset is assumed to 

enhance the chances of finding active compounds of various structural types in 

screening experiments.  It will reduce the time of the chemist to find out the certain 

property of the chemical compound. (Everitt, 1993).  
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 There are many approaches for compound selection such as cluster-based 

compound selection, dissimilarity-based compound selection, partition-based compound 

selection and optimization-based compound selection (Salim, 2003). Among these 

different approaches, cluster-based or clustering has become the most commonly used in 

compound selection. Clustering is an unsupervised learning problem, where only inputs 

are available and no target outputs are predefined by the users. Thus, it deals with 

finding structure in a collection of unlabeled data. It is used to measure the similarity of 

items in multi-dimensional space.  

 

 

By using cluster analysis method, it has helped the researches of finding lead 

compounds faster and more effectively. Thus, cluster-based is one of the most important 

unsupervised learning problems in chemoinformatics.  

 

 

 

 

1.1 PROBLEM STATEMENT 

 

 

The idea of data grouping, or clustering, is simple in its nature and is close to the 

human way of thinking; whenever we are presented with a large amount of data, we 

usually tend to summarize this huge number of data into a small number of groups or 

categories in order to further facilitate its analysis. Moreover, most of the chemical data 

collected in many problems seem to have some inherent properties that lend themselves 

to natural groupings. Nevertheless, finding these groupings or trying to categorize the 

data is not a simple task for humans unless the data is of low dimensionality. This is why 

some methods in soft computing have been proposed to solve this kind of problem.  
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There are various types of clustering methods, the most popular clustering 

methods is fuzzy clustering such as fuzzy c-means, fuzzy k-mean, Gustafson-Kessel, 

and the Gath-Fava. In the last few years, fuzzy clustering from the overlapping 

clustering has been used in chemoinformatics. It represents the real world situation 

where a compound may belong to several clusters simultaneously with different degrees 

of membership (Feher, 2003). The evaluation of fuzzy c-means clustering is done by 

measuring their proportional of actives (Pa) to see their ability to separate active/inactive 

structure; and also their intermolecular dissimilarity for the centroid in the clusters to see 

the differences between centroid clusters (Sharin and Naomie, 2004). The results of the 

analysis show that fuzzy c-means clustering only gives best the result compared to 

Ward’s clustering method based on the intermolecular dissimilarity.  The results for 

separation of active/inactive structure show less proportion of active for clusters from 

fuzzy c-means than Ward’s clustering. Many studies have proven that non-overlapping 

methods are most effective methods for compound selection.  

 

 

We would like to apply the subtractive clustering method in the clustering 

compound selection. Subtractive clustering is a method introduced by Chiu (1994) and 

the efficiency of this method has not been tried in chemoinformatic area. The efficiency 

of the subtractive clustering method by applying subtractive clustering technique in the 

clustering compounds selection will be found out in this research, especially in the 

compound selection application. 
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1.2 OBJECTIVES  

 

 

Identifying objectives are very important in defining the goals to be achieved in this 

project. The followings are the objectives of the project:  

 

i. To apply subtractive clustering technique to chemical compound clustering. 

ii. To measure the efficiency of subtractive technique in clustering the chemical 

compound for compound selection purpose. 

iii. To compare the results of subtractive clustering with Fuzzy c-means and K-

means method based on ability of the method to separate the data to different 

partition with certain portion of active and inactive compound. 

 

 

 

 

1.3 SCOPE OF WORKS 

 

 

The project scope must be identified in order to keep the project running on the 

right track. The followings are the scopes of the project that have been identified:  

 

i. The dataset used is chemical compound dataset obtained from the MDL Drug 

Data Report Database. 

ii. The algorithm that will be used is the subtractive clustering method. 

iii. The descriptors used are Topological Indices only. 

iv. K-fold cross-validation method will be applied in chemical compound 

clustering by using subtractive clustering algorithm, and observing the 

proportion of active compounds from the clusters. 
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1.4     PROJECT PLAN 

 

 

This project will be carried out in two semesters. The first part of the project is done 

in the first semester where the understanding of literature review and methodology to be 

used are focused. With that, most of the time is spent in searching and gathering 

information from articles in journals such as Journal of Chemical and Computer Science 

from the American Chemical Society (ACS), Lecturer Note in computer Sciences. 

 

 

In this project, it is important to understand the chemoinformtic, process of 

similarity searching, clustering method and subtractive clustering. At the end of Project 

I, the main goal is to have better understanding of the terms and topics that have been 

mentioned previously. For the first part of the project, the report includes the 

Introduction, Literature Review and Methodology of the project. All of these are done 

during the first semester.  

 

 

In the second semester, the second part of the project is done that involves the 

generate descriptors, development and implementation of subtractive algorithm is 

carried out. The development process of Project II will start with generating descriptors 

from MDDR database. The research focus on the subtractive technique in clustering 

chemical compound where the effectiveness of the clusters produced with regard to 

compound selection is analyzed. Dataset will be divided to training and testing dataset 

with actives and inactive compound using cross validation technique. The results from 

subtractive clustering will be compared between the dataset experiments. 

 

 

The second part of the report will be written after implementation of the project. 

This part of the report will include the Experimental Result, Analysis of Results and 

Conclusion of the project.  
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1.5 ORGANIZATION OF REPORT 

 

 

Chapter I is the introduction to the project that has been conducted. It contains 

discussions on the problem background, problem statements, project aim, objectives as 

well as scopes of project. The significance and knowledge contributions are also stated 

in this segment. 

  

 

Chapter II discussed the literature reviews that have been combined in order to 

make up the whole project. This includes the background knowledge on the terms that 

are involved in the project mainly on cheminformatic and statistic based clustering 

method.  

 

 

Chapter III is about the methodology that is used in this project. In this section, 

the techniques that are involved are discussed which are subtractive clustering 

algorithm. The hardware and software requirements for this project are also discussed in 

this section.  

 

 

Chapter IV discussed about the results from applying subtractive clustering in 

this project. It is then analyzed by determining which method produced good result in 

clustering chemical compound. 

  

 

Chapter V is the conclusion of the project based on the four previous chapters 

that has been discussed. There are also discussions and future works that can be done to 

enhance this project.  
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