
 

 

 

 

ZINC OXIDE SURGE ARRESTER CONDITION MONITORING USING 

THERMAL IMAGE AND THIRD HARMONIC LEAKAGE CURRENT 

CORRELATION 

 

 

 

 

 

 

NUR ASILAH BINTI ABD GHAFAR 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA 

 

 

 

 



 
 

 

 

 

 

 ZINC OXIDE SURGE ARRESTER CONDITION MONITORING USING 

THERMAL IMAGE AND THIRD HARMONIC LEAKAGE CURRENT 

CORRELATION 

 

 

 

 

NUR ASILAH BINTI ABD GHAFAR 

 

 

 

 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

 Master of Engineering (Electrical) 

 

 

 

 

Faculty of Electrical Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

MAY 2014 

 

 

 

 



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Special dedication to my beloved husband Muhammad Khair Noordin, mother 

Latifah Ahmad, father Abdul Ghafar Haji Tahir, mil Kamsiah Sumiran, fil Noordin 

Atan, son Muhammad Aryan Amsyar and Mukhlis ‘Afy , brothers and sisters who 

have encouraged, guide and inspired me throughout my journey in education 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

  

 

 



iv 

 

 

 

 

 

ACKNOWLEDGEMENT 

 

 

 

 

 All praise to the Almighty Allah, the Most Gracious, Most Merciful and Most 

Benevolent for giving me an opportunity to study for higher education and giving me 

strength and patience in completing my research. 

  

 I would like to express my deepest gratitude towards my supervisor, 

Associate Professor Dr. Zulkurnain bin Abdul Malek who has persistently assisted 

me during the research. It would be very arduous to complete this project without the 

passionate support,guidance and encouragement from him. 

  

 My utmost thanks also go to my family who has given me support and care 

throughout my academic years. Without them, I might not be able to become who I 

am today. My fellow friends should also be recognized for their continuous support 

and acknowledgement. My sincere appreciation also extends to Mr.Novizon, to my 

entire colleagues and my friends who have provided assistance at various occasions. 

Their views and tips are useful definitely. 

 

 Last but not least, thanks to individuals that have contributed either directly 

or indirectly to make my research successfully carried out. Of course, as usual, all 

errors and oversights are entirely my own. Thank you once again. 

 

 

 

  

 

 

 

 



v 

 

 

 

 

 

ABSTRACT 

 

 

 

 

 Arrester is used to protect high voltage equipment or electric power lines 

from permanent or temporary overvoltage. It is imperative to perform a frequent 

monitoring on the condition of the arrester as this device will prevent damage to the 

power system. When there is an AC operating voltage applied across the arrester 

body, there is a small leakage current flowing to the ground terminal of the arrester. 

Currently, the third harmonic component of the leakage current has been used to 

identify the condition of the arrester whether it is still safe to be used. However, 

measurements of the leakage current and its harmonic components pose some 

difficulties. Moreover, the usage of a new technique based on thermal condition in 

monitoring the performance of arrester has been studied widely. The thermal 

condition of an arrester can be used to support the efficiency of the monitoring 

process. This research proposes to investigate the correlation between two variables, 

namely the third harmonic leakage current, and the arrester housing surface 

temperature (representing the thermal condition of the arrester) using a Radial Basis 

Function (RBF) Neural Network analysis. In addition, this research also studies the 

effect of ambient temperature on the correlation between the two variables.  The 

leakage current values were measured using a current shunt and a digital storage 

oscilloscope, and then analyzed using Fast Fourier Transform to obtain its harmonic 

component. The surface thermal profile of the arrester body was captured using a 

thermal camera and then further analyzed to obtain several key representative 

parameters including the maximum, minimum, average, and standard deviation 

temperatures. These temperature parameters, together with the ambient temperature, 

were used as input variables while the third harmonic leakage current magnitude as a 

target to the proposed radial basis function neural network. The ambient temperature 

was then omitted in a repeated computation. From the radial basis function analyses, 

the two mentioned variables are positively correlated. Also, the ambient temperature 

has an effect on this correlation, whereby it is advisable also include the ambient 

temperature in the ANN computation to minimize the error. The results from all 

experimental data (500 training, 61 testing) show that a 97% accuracy in categorizing 

the arrester condition (either good or bad) is successfully achieved. Thus, it can be 

concluded that there is a good correlation between the third harmonic leakage current 

and the thermal image of an arrester which means the thermal image can be used as 

an alternative technique for zinc oxide surge arrester monitoring without the need to 

measure the leakage current.  
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ABSTRAK 

 

 

 

 

Penangkap digunakan untuk melindungi peralatan voltan tinggi atau talian 

kuasa elektrik daripada terlebih voltan kekal atau sementara. Pemantauan yang kerap 

ke atas keadaan penangkap adalah penting kerana penangkap akan menghalang 

kerosakan kepada sistem kuasa. Apabila voltan operasi AC dikenakan ke seluruh 

badan penangkap, terdapat arus bocor kecil mengalir ke terminal bumi penangkap. 

Pada masa ini, komponen harmonik ketiga arus bocor telah digunakan untuk 

mengenal pasti keadaan penangkap sama ada ia masih selamat untuk digunakan. 

Walau bagaimanapun, pengukuran arus bocor dan komponen harmonik 

menimbulkan beberapa kesukaran. Selain itu, penggunaan keadaan terma dalam 

memantau prestasi penangkap telah dikaji secara meluas. Keadaan terma penangkap 

boleh digunakan untuk menyokong keberkesanan proses pemantauan. Kajian ini 

mencadangkan untuk menyiasat hubungan antara dua pembolehubah: harmonik 

ketiga arus bocor dan suhu permukaan perumah penangkap (mewakili keadaan terma 

penangkap) menggunakan analisis Rangkaian Neural Fungsi Asas Radial (RBF). Di 

samping itu, kajian ini juga mengkaji kesan suhu persekitaran kepada hubungan 

antara kedua-dua pembolehubah. Nilai arus bocor diukur dengan menggunakan 

pemirau arus dan osiloskop digital dan kemudian dianalisis dengan menggunakan 

Jelmaan Fourier Pantas untuk mendapatkan komponen harmonik. Profil suhu 

permukaan perumah penangkap diambil menggunakan kamera terma dan kemudian 

dianalisis untuk mendapatkan beberapa wakil parameter utama termasuk suhu 

maksimum, minimum, purata dan sisihan piawai. Parameter suhu bersama-sama 

dengan suhu persekitaran telah digunakan sebagai pembolehubah masukan manakala 

harmonik ketiga arus bocor sebagai sasaran kepada Fungsi Asas Radial yang 

dicadangkan. Analisis diulang dengan mengeluarkan suhu persekitaran. Fungsi Asas 

Radial menunjukkan bahawa kedua-dua pembolehubah yang dinyatakan telah 

berhubung secara positif. Suhu persekitaran juga mempunyai kesan kepada 

hubungan ini. Keputusan daripada semua data eksperimen (500 latihan, 61 ujian) 

menunjukkan bahawa ketepatan sebanyak 97% dalam mengkategorikan keadaan 

penangkap (sama ada baik atau buruk) telah berjaya dicapai. Oleh itu, dapat 

disimpulkan bahawa terdapat hubungan yang baik antara harmonik ketiga arus bocor 

dan imej terma penangkap dimana imej terma boleh digunakan sebagai teknik 

alternatif untuk pemantauan penangkap pusuan logam oksida tanpa perlu mengukur 

arus bocor. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study  

 

 

Electric power system in power station is a system or network of electrical 

equipment that is used to generate, transmit and distribute electrical power to the 

consumer. High voltage equipment such as generator, transformer, transmission line, 

insulator, circuit breaker and arrester are examples of electrical equipment in the 

power station. These equipment operate simultaneously to provide a continuous 

electricity. Protection system is one of the important systems that must operates 

efficiently. Its failure could lead to several damages in the power system which 

might affect the whole operation system. 

 

 

Metal oxide (MO) surge arrester is one of protection device that is generally 

used to protect the equipment in the power system from damaging effect of 

overvoltage. It is installed near the equipment being protected to minimize the 

inductive effects of the leads while discharging large surge current. MO surge 

arrester is connected between the phase and ground terminals of arrester. Basically, 

surge arrester has two main functions regarding to the operating system condition 

(Durbak, 2001). Apparently, surge arrester does nothing during normal operating 
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voltages as there are approximately no current flows through the arrester due to a 

very high resistance. On the other hand, surge arrester must have the ability to 

conduct high current during overvoltage without causing any fault to the system. 

Overvoltage can be divided into three types, these are lightning strokes, temporary 

overvoltage and switching surge. Temporary overvoltage may occur due to fault 

condition while switching surge may occur due to opening and closing of the circuit 

breakers in the system.  

 

 

 

Figure 1.1 Cross-section view of polymeric MO surge arrester 

(http://www.hubbellpowersystems.com/arresters/trans/basics/) 

 

 

Figure 1.1 shows the cross sectional view of a polymeric MO surge arrester 

of Ohio Brass brand. MO surge arrester has a very simple structure that consists of 

two parts. Outer part is an insulating housing which is made of porcelain or 

polymeric material while inner part or inner active column contains metal oxide 

varistors and thermal dissipating elements. The main component of surge arrester is 

the varistor as it provides the desired nonlinear characteristics and presents a strong 

relation with the temperature (low current range). Nowadays, zinc oxide (ZnO) 

varistor is the choice of many as it gives the best performance in energy dissipating 
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ability (Neto et al., 2004) and has a highly nonlinear voltage current characteristic 

(Castro et al., 1993).  

 

 

Figure 1.2 shows the graph of voltage magnitude of equipment with and without the 

arrester device in per unit. The time axis is divided into the range of lightning 

overvoltage in microsecond, switching overvoltage in milisecond and temporary 

overvoltage in second. The blue line represents the withstand voltage of high voltage 

equipment. It is clarifies that by using an arrester as a protection device, the voltages 

of equipment are limited below the withstand voltage. However, if the equipment is 

not protected by arrester device, the magnitude of overvoltage can reach until several 

per unit. This phenomenon clearly shows the importance of arrester for overvoltage 

protection. 

 

 

 

Figure 1.2 Schematic representation of the magnitude of overvoltage 

(Heinrich and Hinrichsen, 2001) 

 

 

A good zinc oxide arrester should recover to its initial condition after its 

voltage limiting operation. Nonetheless, the voltage current characteristic of ZnO 
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arrester will changes due to degradation and will affects the performance of arrester.  

 

 

 

 

1.2 Zinc Oxide Surge Arrester Monitoring 

 

 

Zinc oxide surge arrester is a protection device that protects power system 

equipment from undesired damage or breakdown caused by overvoltages. It is 

important to maintain the arrester in a good condition during its service in order to 

ensure a reliable and safe power system. The condition of arrester that is in service 

must be regularly monitored even though it has no serviceable part that requires a 

regular maintenance. One of the purposes of a regular monitoring is to detect the 

presence of an abnormal ageing and degradation of the arrester itself, as the ageing 

condition at a given time can basically be related to the performance of the arrester.  

 

 

There are few methods to monitor the condition of an arrester in service that 

have been presented in the past. These include the ultrasonic and radio interference 

detections, partial discharge and electromagnetic radiation measurements, thermo 

vision methods, and the leakage current measurement (Christodoulou et al., 2009). In 

the leakage current method, most researchers use the total leakage current measured, 

usually using a clamp at the ground-end terminal of an arrester, to extract the arrester 

ageing condition (Lundquist et al., 1990; Heinrich and Hinrichsen, 2001; Neto et al., 

2004; Karawita and Raghuveer, 2005; Karawita and Raghuveer, 2006; Neto et al., 

2006; Lee and Kang, 2005; Abdul-Malek et al., 2008; Huijia and Hanmei, 2010).  

The total leakage current of an arrester consists of two components, namely the 

resistive component and the capacitive component. The resistive component needs to 

be extracted from the total leakage current signal since it is the magnitude of the 

resistive current that is usually used as the arrester ageing indicator. The increase in 

the magnitude of the resistive current is mainly caused by a deteriorated zinc oxide 

element within the arrester (Shirakawa et al., 1988). 
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Many years later, researchers had found out that the magnitude of the third 

harmonic component of the resistive leakage current was more accurate to be used in 

determining the ageing condition of the arrester. Subsequently, the increase in the 

third harmonic component magnitude had to be analysed. Lundquist et al. (1990) has 

stated that the amplitude of the harmonic current increases with the increment of 

resistive component of the leakage current. The authors used the harmonic content in 

the resistive leakage current as an ageing indicator. Nevertheless, Heinrich and 

Hinrichsen (2001) found out that the third harmonic of the resistive leakage current 

can be used to detect specific kinds of degradation only as the third harmonic 

component cannot be used to detect the degradation caused by moisture ingress. 

Since an arrester in service is energised by the system voltage, the harmonics present 

in the system voltage may be measured together with the harmonic component 

generated by the ageing surge arrester itself. Some differentiations between the 

different sources of harmonics are therefore needed. Lundquist et al. (1990) has 

proven that for a method that is based on the compensation technique, the harmonic 

analysis of the leakage current is not affected by the presence of harmonics in the 

system voltage.  

 

 

There are several difficulties in measuring the third harmonic of the resistive 

leakage current of an arrester. Until now, the simplest device that can measure the 

leakage current of an arrester is a current probe. The current probe can only measure 

the total leakage current while the resistive and harmonic components have to be 

determined by a further processing of the measured leakage current signal. The 

current probe which is connected to a display device is clamped in the ground-end 

terminal of the arrester. The current probe and display device may suffer from many 

disturbances due to the surrounding high electromagnetic field which may then lead 

to inaccurate readings (Abdul-Malek et al., 2010a).  
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1.3 Problem Statement 

 

 

In the past years, several researchers (Mizuno et al., 1981; Andoh et al., 

2000; Heinrich and Hinrichsen, 2001; Xianglian et al., 2002; Jinliang et al., 2003; 

Neto et al., 2004; Neto et al., 2006; Miyakawa et al., 2008, Abdul-Malek et al., 

2008) have reported on the usage of arrester housing thermal images for monitoring 

the ageing condition of an arrester. The housing of an arrester is usually made from 

materials that are durable and heat resistant so that it can withstand high temperatures 

for a long-term duration. Neto et al. (2006) has confirmed the usage of thermal 

analysis as an adequate methodology to monitor the performance of a zinc oxide 

arrester. The surface temperature of an arrester can indicate the characteristic of the 

arrester as the presence of hot spots can be due to its ageing condition.  It is noted 

that the arrester surface temperature is not only dependent on the ageing related 

internal leakage current, but also the ambient temperature. Therefore, when 

measurements are made, the ambient temperature can also be used as an additional 

parameter for a better accuracy in deciding the ageing condition of the arrester. The 

effects of the ambient temperature on the ageing analysis of surge arresters are 

mentioned in (Zahedi, 1994). The author has stated that as the ambient temperature 

increases, the temperature of the arrester valve element also increases which will 

cause an additional heating to the element and may lead to a thermal runaway 

condition.  

 

 

A thermography camera is a well-known device that can capture the thermal 

image of an object together with details such as the hot spots, maximum and 

minimum temperatures, and etcetera. Several researchers (Neto et al., 2004; Neto et 

al., 2006) have used thermography cameras in monitoring the arrester temperature 

for signs of ageing and degradation. This camera can be used to capture the surface 

temperatures of an arrester while it is in service without being influenced by the 

surrounding high electromagnetic field. A sudden appearance of hot spots or rise in 

the maximum temperature in the captured thermal image may indicate arrester 

degradation, and depending on the ageing level, may require an immediate 

replacement. Neto et al. (2009) and Lira et al. (2010) have captured thermal images 
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of defective arresters while in service, and then have analysed the images using a 

simple Artificial Neural Network. In particular, they have adopted the resilient 

propagation and the self-organizing maps techniques to correlate between the 

thermal images and the failure condition of the arrester.  

 

 

The technique proposed by Neto et al. (2009) and Lira et al. (2010) were used 

to classify the arrester according to the current condition status either defective or not 

and they have a correlation or decision error of about 0.6% and 4.17%. Later, Neto et 

al. (2009) proposed the Radial Basis Function (RBF) technique for obtaining a lower 

decision error in classifying the arrester condition using a thermal profile. However, 

both authors do not include the measurement of leakage current as an indicator to the 

ageing condition of arrester as a supportive data. Meanwhile, Mizuno et al. (1981) 

has includes the effect of ambient temperature on the thermal runaway monitoring 

condition on the zinc oxide valve elements.  Even though many studies had been 

carried out with respect to the use of thermal images and artificial intelligence in 

determining the arrester condition, more work still need to be done to relate the 

ambient temperature to the two factors and improve the accuracy of artificial 

intelligence. Thus, this research aims to use a Radial Basis Function Neural Network 

in correlating the third harmonic leakage current with arrester housing surface 

temperature with taking the ambient temperature into consideration to monitor the 

ageing condition of arrester.  

 

 

 

 

1.4 Objectives of the Research  

 

 

The objective of this study is to obtain the algorithm of Radial Basis Function 

in order to correlate third harmonic leakage current and housing surface temperature 

of arrester. Specifically, the objectives of study are: 
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1. To obtain and analyze the experimental data on leakage currents and thermal 

images of zinc oxide surge arresters. The housing surface temperatures are to 

be statistically analysed and summarised into several key parameters. 

 

2. To obtain a correlation between the third harmonic leakage current and the 

arrester housing surface temperature (represented by several statistical 

parameters) using the Radial Basis Function Neural Network and determine 

the effect of the ambient temperature to the correlation. 

 

 

 

 

1.5 Research Scope  

 

 

There are several scopes needed to achieve the objectives of this research. This 

research is focusing on determining the leakage current and thermal images of six 

120kV rated gapless polymeric arresters. The leakage current is measured using a 

high digital oscilloscope and analyzes using MatLab software to get the third 

harmonic leakage current. Whereas, the thermal images of arrester housing surface is 

captured using a high resolution thermography camera and analyze using InfReC 

Analyzer Thermography Studio software to get the arrester housing surface thermal 

profile. The thermal profile used in this analysis is a line profile that is taken at the 

center of the arrester body. The line profile is further analyzed to get the temperature 

parameters that are maximum, minimum, average and standard deviation 

temperature.  Radial basis function neural network is then used in correlating the 

obtained third harmonic leakage current values with the arrester housing surface 

temperature using a MatLab software application. The basis function that is used in 

the analysis is a newrb function with setting the mean square error to 0.002. The 

ambient temperature is also recorded and used in the analysis to see the effects 

towards the correlation.  
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1.6 Contribution  

 

 

The contributions of this research are outlined below: 

 

i. A technique to represent the arrester housing surface temperature from its 

thermal image had been proposed. The arrester housing surface temperature 

can be adequately represented by these key parameters – the maximum 

temperature, minimum temperature, average temperature and standard 

deviation temperature. 

 

ii. A new finding on the effects of the ambient temperature on the correlation 

between the third harmonic leakage current and the arrester housing surface 

temperature had been obtained. The effect of ambient temperature is in terms 

of improving the accuracy of the artificial intelligence.  

 

iii. A new algorithm using a radial basis function in correlating the third 

harmonic leakage current with the arrester housing surface temperature had 

been obtained. 

 

 

 

 

1.7 Summary 

 

 

Chapter 1 describes the background of study, zinc oxide surge arrester 

monitoring, problem statement, objectives, research scope and contribution of this 

research. This chapter is a research proposal or preparations that need to be followed 

throughout this research.  
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