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ABSTRACT 

 The study of SiO2 commercial optical fiber explores the useful 

thermoluminescence (TL) properties and reveals its potential as a TL dosimeter. The 

present work describes the TL dose response, reproducibility, fading and minimum 

detectable dose of SiO2: Yb and SiO2: Yb, Tb optical fibers as compared to TLD-100. 

The optical fibers were placed in a solid phantom and irradiated with 6 and 10 MV X-

rays using LINAC Primus MC 3339 and 1.25 MeV gamma ray from gamma cell. 

Scanning electron microscopy analysis was performed to determine the dopant 

concentration and the effective atomic number, Zeff. The dopant concentration of Yb for 

SiO2: Yb optical fiber was found ranging between 0.23 – 0.35 mol% and for SiO2: Yb, 

Tb; the dopant concentration of Yb and Tb were in the range of 0.03 – 1.46 mol% and 

0.12 – 0.39 mol% respectively. The Zeff value for SiO2: Yb and SiO2: Yb, Tb were 

11.19 and 12.27 respectively, which is higher than that of soft tissue (7.42), but close to 

bone (11.6 – 13.8). In term of TL dose response and sensitivity, SiO2: Yb, Tb optical 

fiber demonstrated better results than SiO2: Yb optical fiber, but both TL materials were 

still inferior when compared to TLD-100. SiO2: Yb, Tb optical fiber had the lowest 

percentage lost in fading of about 5.83%, 15.65% and 18.55% for day 7, 21 and 28 

respectively, compared to SiO2: Yb optical fiber which has higher fading of about 

55.17% and 95.87% for day 14 and 30 respectively. SiO2: Yb, Tb optical fiber shows 

good reproducibility results compared to SiO2: Yb optical fiber. The minimum 

detectable dose of SiO2: Yb and SiO2: Yb, Tb optical fibers were 333 mGy and 19 mGy 

respectively. In general, it can be concluded that SiO2: Yb, Tb optical fiber is a much 

better optical fiber to be developed as a new TL dosimeter compared to SiO2: Yb 

optical fiber. 

 

 



 

 

 

ABSTRAK 

 Kajian gentian optik komersial SiO2 meneroka ciri luminesens terma (TL) 

berguna dan keupayaan sebagai dosimeter TL. Kajian ini membincangkan sambutan 

dos luminesens terma, kebolehulangan, kepudaran dan dos pengesanan minimum 

gentian optik SiO2: Yb dan SiO2: Yb, Tb dan berbanding TLD-100. Gentian optik 

diletakkan di dalam fantom pepejal dan disinarkan dengan sinar-X 6 dan 10 MV 

menggunakan LINAC Primus MC 3339 dan sinar gama 1.25 MeV dari sel gama. 

Analisis mikroskop pengimbas elektron (SEM) dilakukan bagi menentukan kepekatan 

dopan dan nombor atom berkesan, Zeff. Kepekatan dopan Yb bagi gentian optik SiO2 

ialah dalam julat 0.23 – 0.35 mol% dan kepekatan dopan Yb dan Tb bagi SiO2 : Yb, Tb 

masing-masing ialah 0.03 – 1.46 mol% dan 0.12 – 0.39 mol%. Nilai Zeff bagi gentian 

optik SiO2 : Yb dan SiO2 : Yb, Tb masing-masing ialah 11.19 dan 12.27, iaitu lebih 

tinggi daripada nilai tisu lembut (7.42), tetapi hampir dengan tulang (11.6 – 13.8). Dari 

aspek sambutan luminesens terma, SiO2 : Yb, Tb memberi keputusan yang lebih baik 

berbanding SiO2 : Yb, tetapi kedua-dua bahan masih tidak dapat menandingi TLD-100. 

Gentian optik SiO2 : Yb, Tb mempunyai peratus kepudaran yang lebih rendah iaitu 

5.83%, 15.65% dan 18.55% masing-masing pada hari ke-7, 21 dan 28 berbanding 

dengan SiO2 : Yb yang mempunyai peratus kepudaran yang lebih tinggi sebanyak 

55.17% dan 95.17% pada hari ke-14 dan 30. Hasil kajian menunjukkan gentian optik 

SiO2 : Yb, Tb menunjukkan keputusan sifat kebolehulangan yang lebih baik berbanding 

gentian optik SiO2 : Yb. Dos pengesanan minimum bagi gentian optik SiO2 : Yb dan 

SiO2 : Yb, Tb masing-masing ialah 333 mGy dan 19 mGy. Secara umum dapat 

disimpulkan bahawa gentian optik SiO2 : Yb, Tb adalah lebih sesuai untuk dimajukan 

sebagai dosimeter TL berbanding gentian optik SiO2 : Yb. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Research Background 

 

In radiotherapy and radio diagnosis, in order to map dose in tissues, there exist a 

need for highly sensitivity in vivo dosimetry systems of high spatial resolution, 

commercially available thermoluminescence dosimeters (TLDs) being limited to a 

capability of few millimeters. The spatial resolution and dynamic range required of a 

dosimeter to accurately evaluate the radiotherapy dose distribution of such complex 

three-dimensional geometries, especially at the micro spatial resolution scale, is 

becoming more challenging. Major advantages in using optical fibers or optical fibers 

sensors for radiation detection and monitoring are: real-time interrogation capabilities, 

possibility to design spatially resolved solutions and in-vivo investigation (Sporea et al. 

2012). 



 

The foundation of thermoluminescence (TL) theory appear to be due to Randall 

and Wilkins (1945) and by Garlick and Gibson (1948) (Mckeever et al. 1988), 

providing expressions for the shape of a glow peak in terms of temperature, heating 

rate, and the characteristic of the trap. LiF has been developed commercially by 

Harshaw Chemical Company and made available as TLD 100, TLD 100H, TLD 600 

and TLD 700 depending on the quantity of Li present. The Li concentration determines 

how the element will respond to neutrons, and an activator is required for the material to 

be thermoluminescent. The effective atomic number of LiF (Zeff = 8.04) is close enough 

to the value of Zeff for tissue make it almost tissue equivalent.  

 

Studies of potential radiation therapy applications of the optical fiber TL 

dosimetric system have been undertaken by several groups. Since then, much research 

has been carried out for a better understanding and improvement of the material 

characteristics as well as to develop new TL materials. As stated by Espinosa et al. 

(2006), that optical fibers could be very attractive for using in a variety of radiation 

dosimetry applications due to its small size, flexibility, low cost and commercially 

available.  Abdulla et al. (2001) has carried out a TL study on commercially available 

Ge-doped silica based fiber optic in the dose range from 1 to 120 Gy and has fast fading 

rate (2% within 6 hours and 6% within 30 days).  

 

Hashim et al. (2009) work was also based on commercially available Ge-doped 

optical fiber and compared to aluminum doped optical fiber. The TL dosimeters were 

exposed by a wide range of sources, from low energy photons to megavoltage, through 

neutrons and charged particles. The results showed that Ge-doped optical fiber had 

linear dose response until at least 4 Gy for 6 MV photons, and up to 3.5 Gy for 6, 9and 

12 MeV electrons irradiation. A linear dose response was found for 2.5 MeV protons 

irradiations.  

 



 

Another study from Hashim et al. (2010) was done by using oxygen atoms as a 

dope to pure SiO2 optical fibers by using ion implantation technique. The O2- , Ge- and 

Al- doped optical fibers were exposed to 6 MV photons and separately to 6, 9 and 12 

MeV electrons. The results show the superior TL response to be that of the Ge-doped 

optical fibers followed by the O2-doped fibers and lastly Al-doped fibers.  

 

Encouraging results from such studies have paved the way in development of 

the fiber radiation dosimeters specifically TL dosimetric characterization and properties 

such as the glow curves parameters, energy dependence, relative energy response and 

dose rate effect.  

 

In many TLD applications, the main purpose is to determine the dose absorbed 

in human tissue. For this reason, it is desirable that the TLD has an energy response 

equal to that human tissue. In composite materials, for photon interactions the atomic 

number cannot be represented uniquely across the entire energy region, as in the case of 

elements, by a single number known as effective atomic number, Zeff (Shivaramu et al. 

2000). It is very useful in medical radiation dosimetry for the calculation of dose in 

radiation therapy and medical imaging. TL materials with Zeff = 7.42 or near this 

number are called tissue equivalent.  

 

1.2 Objectives of the Research 

 

The objectives of this study are: 

a) To determine the Zeff of Ytterbium, Yb and Ytterbium-Terbium, Yb-Tb doped 

SiO2 and compare them with Zeff of tissue and bone. 

b) To determine the dose response (dose linearity and sensitivity) and energy 

response and compare them with LiF: Mg, Ti. 



 

c) To determine the fading, reproducibility and minimum detectable dose of Yb 

and Yb-Tb doped SiO2 optical fiber. 

 

 

1.3 Statement of the Problem 

 

Among the wide choice of radiation dosimeters that can be used for application 

in radiotherapy, brachytherapy, diagnosis radiology and radiation protection of the 

patient, thermoluminescence dosimetry (TLD) now become the well-established 

technique for radiation detection. But it also has several restrictions including being 

hygroscopic and having relatively poor spatial resolution – up to few millimeters. 

 

In in-vivo dosimetry, the radiotherapist faces problem to set the exposure in 

real-time to ensure that the proper dose is delivered to the desired region. Because, it 

only provides integrated dose information after some time of irradiation of patient. 

Other limitations of TLD are poor dose reproducibility, limited dynamic range and 

sensitivity and in certain cases nonlinear response. This study intended to investigate 

the alternative dosimetric material base on SiO2 optical fiber as a TL dosimeter. 

 

Recently, several research groups have started to use SiO2 optical fibers as a 

radiation dosimeter to measure the absorbed dose by patients, in particular overcoming 

the spatial resolution limitations of existing TL dosimeter system (Yaakob et al., 2011) 

and for certain dopant and dopants concentrations, sufficient TL yield to serve the 

associated sensitivity needs (Wagiran et al., 2012). However, the manufacturers did not 

specify the amount of dopant added in the optical fiber. Therefore, in this research, the 

concentration of dopant for Tb-Yb and Yb-doped SiO2 optical fiber will also be 

determined. 

 

  

 

 



 

 In regard to the potential of Ytterbium, Yb and Ytterbium-Terbium, Yb-Tb 

doped optical fiber for therapeutic dosimetry application, studies have been carried out 

to investigate the TL response of this candidate dosimeter for various types of radiation 

beam. It is important to investigate the possible linear dose response between the 

absorbed dose and the TL intensity over a wide range of dose as well as the energy 

response of the dosimeters.  

 

 

1.4 Scope of the Research 

 

This study may provide a basis for applying TL phenomena in several 

dosimetric situations. Their general characteristics such as linearity, energy response, 

reproducibility, fading, sensitivity and atomic effective number, may provide 

information to introduce Yb-Tb and Yb-doped SiO2 optical fiber as a new TL material. 

This dosimeter may be suitable for many types of application particularly in radiation 

therapy. 

 

The irradiation of the core of the optical fiber exposed at dose level ranging 

from 0.5 – 4.0 Gy of X-ray irradiation using Primus MLC 3339 linear accelerator 

machine (LINAC) at 6 and 10 MV X-ray beams and 1.0 – 10.0 Gy for 1.25 MeV 

gamma rays using Cobalt-60. The determination of fading effect of Tb-Yb and Yb-

doped optical fiber has been done using 6 MV X-ray irradiation at 4.0 Gy. Readings of 

TL yield are obtained on 30 days following the time of exposure, and the 

reproducibility characteristic were examined using 6 MV X-ray with dose 4 Gy 

produced by LINAC. 

 

This study has also been carried out to determine dopant concentration and 

effective atomic number, with Zeff for Tb-Yb and Yb-doped optical fiber using a 

scanning electron microscope (SEM). By using SEM, the composition of the elements 

present in the fiber and the effective atomic number was determined.  

 



 

1.5 Significance of the Research 

 

The ability to manufacture silica fibers of relatively small diameter provides the 

possibility of producing a thermoluminescence dosimeter offering high spatial 

resolution. It is a further expectation that such fibers will provide radiation 

measurements close to that of an ideal Bragg-Grayy cavity. This is important in the 

accurate evaluation of absorbed radiation dose, being a critical consideration for non-

tissue equivalent probes such as doped silica glass.  

 

There are a lot of advantages of doped silica glass fiber dosimeters. For 

example, unlike conventional TLDs, the fibers are impervious to water; it then becomes 

possible to locate the fiber dosimeter within a particular tissue of interest. With the 

flexibility of silica glass fibers, this further suggests the possible use of fibers in a 

variety of vascular procedures that involve appreciable radiation doses, in particular, in 

intra-coronary artery brachytherapy.  
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