
 
 

PULSED STREAMER DISCHARGE CHAMBER TO REDUCE NITROGEN 

OXIDES FROM DIESEL ENGINE EXHAUST 

 

 

 

 

 

 

 

 

 

 

NURUL AIN BINTI ROSLAN 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA 

 



 

 PULSED STREAMER DISCHARGE CHAMBER TO REDUCE NITROGEN 

OXIDES FROM DIESEL ENGINE EXHAUST 

 

 

 

 

 

NURUL AIN BINTI ROSLAN 

 

 

 

 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Master of Engineering (Electrical) 

 

 

 

 

Faculty of Electrical Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

 

MAY 2014 



iii 
 

 

 

 

 

 

 

Special dedicated to my beloved husband, Mohd Hamizan Bin Omar and my son 

Muhammad Ammar Amsyar bin Mohd Hamizan, 

My dearest mother and father, 

Mrs. Fadzillah Binti Abbas & Mr.Roslan Bin Othman 

 

The rest of my family members and family in law, 

All my friends and relatives, 

 

All my teachers and lecturers, 

For their love, support, cares, sacrifice and Doa 

 



iv 
 

ACKNOWLEDGEMENT 

 

 

 

 

 Alhamdulillah, finally I have completed this project entitled ‘Pulsed Streamer 

Discharge Chamber to Reduce Nitrogen Oxides from Diesel Engine Exhaust'.  

 

  Firstly, praise be to ALLAH, the Lord of the Worlds, for His blessing and 

giving me a little strength in completing my research work. I would like to take this 

opportunity to express my appreciation to my supervisor, Assoc. Prof Dr. Zolkafle 

bin Buntat for his direct supervision, encouragement and guidance throughout this 

project. 

 

   I would like to thank Dr. Muhammad Abu Bakar Sidik, other lecturers and 

technicians for their kindness and guidance. I am very grateful to get their help and 

advices. Besides that, I would also like to express my appreciations to my fellow 

friends for their supporting towards completing this research. 

 

I am also indebted to Universiti Teknologi Malaysia (UTM) and Ministry of 

Higher Education (MOHE) of Malaysia for providing the financial support and 

cooperation during the course of the research. Librarians at UTM and staff at Faculty 

of Electrical Engineering, UTM also deserve special thanks for their assistance in 

supplying the relevant literatures. 

 

Last but not least, thanks to everyone who involved directly or indirectly in 

completing this project either in opinion, advice or support from the beginning of the 

project until its completion. 

 



v 
 

ABSTRACT 

 

 

 

 

Major air pollution problem contributed by Nitrogen Oxides (NOx) has a 

noxious effect on human health and environment. Implementation of stringent 

regulation of NOx emission has greatly increased interest in the development of new 

effective pollution control technology. Non-Thermal Plasma (NTP) utilizing 

electrical discharge has been recognized as a promising technology for the removal 

of pollutant gases from diesel engine exhaust. In this research, cascaded pulsed 

streamer discharge plasma reactor was designed to investigate the removal of NOx 

from diesel engine exhaust. A simulation study consists of flow analysis of cascaded 

pulsed streamer discharge plasma reactor was conducted using Commercial 

Computational Fluid Dynamics (CFD) to evaluate the performance of the discharge 

plasma chamber on the removal of NOx from diesel engine exhaust together with 

engine performance. Several parameters including gap spacing, chamber length and 

number of stages were varied to investigate their effects on system performance. The 

results from simulation study show that the cascaded pulsed streamer discharge 

plasma reactor with three stages of treatment process provides more effective 

performance on the removal of NOx pollutant from diesel engine exhaust without 

affecting engine performance. This is in line with the initial assumption that three 

stages cascaded chamber will effectively remove the NOx from diesel engine 

exhaust. A mathematical modelling by using dimensional analysis has been 

developed that is appropriate in investigating the relation of the electrical and 

physical parameters on the removal of NOx concentration from diesel engine 

exhaust. To verify the viability of the analysis, results obtained from the dimensional 

analysis were compared with the experimental results reported in previous research. 

These predictions calculation demonstrates a reasonable agreement with the 

experimental data. 
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ABSTRAK 

 

 

 

 

Masalah utama pencemaran udara yang dihasilkan oleh Nitrogen Oksida (NOx) 

mempunyai kesan berbahaya terhadap kesihatan manusia dan alam sekitar. Perlaksanaan 

peraturan perlepasan NOx yang ketat telah meningkatkan minat dalam membangunkan 

teknologi kawalan pencemaran baru yang lebih berkesan. Plasma bukan terma 

menggunakan discas elektrik telah diiktiraf sebagai satu teknologi yang berpotensi untuk 

penyingkiran gas pencemar dari ekzos enjin diesel. Dalam penyelidikan ini, kebuk 

plasma cascaded pulsed streamer discharge telah direka untuk mengkaji penyingkiran 

NOx dari ekzos enjin diesel. Satu kajian simulasi yang terdiri daripada analisis aliran 

kebuk plasma cascaded pulsed streamer discharge yang telah dijalankan dengan 

menggunakan Commercial Computational Fluid Dynamics (CFD) untuk menilai prestasi 

kebuk plasma discas terhadap penyingkiran NOx dari ekzos enjin diesel bersama dengan 

prestasi enjin. Beberapa parameter termasuk sela jarak, panjang kebuk dan bilangan 

peringkat telah diubah bagi mengkaji kesan parameter tersebut terhadap prestasi sistem. 

Hasil daripada kajian simulasi menunjukkan bahawa kebuk plasma cascaded pulsed 

streamer discharge dengan tiga peringkat proses rawatan memberikan prestasi yang 

lebih berkesan terhadap penyingkiran NOx daripada ekzos enjin diesel tanpa 

menjejaskan prestasi enjin. Ini sejajar dengan andaian awal bahawa tiga peringkat kebuk 

kaskad dapat menyingkirkan NOx dari ekzos diesel dengan lebih berkesan. Permodelan 

matematik dengan menggunakan analisis dimensi yang sesuai telah dibangunkan untuk 

menyiasat hubungan antara parameter elektrik dan fizikal ke atas penyingkiran NOx 

daripada ekzos enjin diesel. Untuk mengesahkan kesesuaian analisis, keputusan yang 

diperolehi daripada analisis dimensi tersebut telah dibandingkan dengan keputusan 

eksperimen yang telah dilaporkan di dalam kajian lepas. Pengiraan ramalan ini 

mempamerkan persetujuan yang munasabah dengan data eksperimen.         .       
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CHAPTER 1 
 

 

 

 

INTRODUCTION 
 

 

 

 

1.1 Background of Study 

 

 

Malaysia is a rapidly developing country that is working hard towards 

achieving its Vision 2020, of becoming a developed country. Indeed, the increase in 

economic activities has also resulted in the increase of the country air pollution 

problems. Survey conducted by Department of the Environment, Malaysia in 1996 

had shown that mobile source is the major sources of air pollution in Malaysia which 

is 82%, followed by power station, 9%, industrial fuel burning, 5%, industrial 

production processes, 3%, open burning at solid waste disposal site, 0.8% and 

domestic and commercial furnaces, 0.2% as seen in Figure 1.1 [1]. 

 

 

Statistically has shown that nowadays diesel engines are widely used instead 

of gasoline engines for heavy duty transportation due to their excellent in fuel 

economy, high thermal efficiency, reliability, long durability and low operating 

costs. Since it has higher thermal efficiency, diesel engines have lower fuel 

consumption of about 20-40% lower compared to gasoline engines. Table 1.1 shows 

the characteristics of diesel engine and gasoline engine [2]. 
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Figure 1.1 Sources of air pollution in Malaysia [1] 

 

 

Table 1.1: The characteristics of diesel engine and gasoline engine [2] 

 Gasoline Engine Diesel Engine 

Combustion Process Air and fuel are mixed in 

advance and then drawn 

into the cylinder and 

compressed. 

 

 

The compressed mixture 

is ignited by an ignition 

plug. 

Air is drawn into the 

cylinder and highly 

compressed. Then, fuel is 

sprayed into the cylinder 

under high pressure. 

 

Ignition occurs 

spontaneously as a result 

of the high temperature 

generated through 

compression. 

Thermal Efficiency  

(Ratio of heat converted 

into power against total 

heat generated during 

combustion) 

 

                       

              25-30% 

 

           

               35-42% 

 

 

The total number of registered vehicles in Malaysia increase each year from 

9,928,238 in 2005 to 12,763,452 in 2011 as reported by the Road Transport 

Department of Malaysia shown in Table 1.2 [3]. High dependence on motorized 

transportation by modern society has increase the demand for transportation.  
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An increase of these vehicles brings along the man-made air pollution 

problem, especially in urban area due to incomplete fuel combustion that is emitted 

from engine exhaust such as nitrogen oxides (NOx), sulfur oxides (SOx), carbon 

monoxide (CO), hydrocarbon (HC) and particulate matter (PM) in the form of soot 

[4]. All these emissions are considered to be harmful to human health and 

environment. As can be seen in Figure 1.2, the production of NOx is much higher in 

the operation of diesel engine compared to gasoline engine. The NOx pollutant can 

also be produced by undesired reaction between nitrogen and oxygen from the air in 

the combustion chamber [2]. 

 

 

Table 1.2: Number of registered vehicles in Malaysia from 2005-2011 [3] 

Year Number of Register Vehicles 

2005 9,928,238 

2006 10,351,332 

2007 10,769,531 

2008 11,227,144 

2009 11,697,306 

2010 12,236,254 

2011 12,763,452 

 

 

 

Figure 1.2 Composition of pollutant emission from diesel engine and gasoline 

engine [2] 
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The emission of NOx into the atmosphere is found to be the main contributor 

to the formation of acid rain and atmospheric photochemical smog which cause 

damage to the vegetation and aquatic ecosystems. A large parts of NOx produced 

mainly by diesel engines are also known to cause serious respiratory problems to 

humans and simultaneously reducing plant growth as it may decrease the ability of 

plants to convert sunlight to energy [5, 6].  

 

 

As perceived during the recent haze crisis, although Malaysia has a decent 

environment to stabilize the pollutant, it has already reached a critical level [4, 7]. 

From 2007 onwards, the emission standards for NOx concentration from heavy duty 

vehicles require 90% reduction from 2003 level [8].  Since legal limits for emission 

of noxious pollutants becoming stricter year by year, a new emission control 

technology has been implemented while currently used techniques have been 

improved to obtain more efficient technology in order to remove the harmful 

pollutants from diesel engine exhaust at reasonable costs.  

 

 

  Many researchers have been studying several methods including selective 

catalytic reduction (SCR), NOx storage and reduction (NSR), exhaust gas 

recirculation (EGR) and electron beam irradiation in their previous work. 

Nevertheless, each method has their own limitations in removing the pollutant gases 

from diesel engine exhaust [5, 9-11]. 

 

 

Non-thermal plasma (NTP) utilizing electrical discharge is found to be very 

promising technology for the removal of pollutant gases from diesel engine exhaust, 

which is extremely effective and economical approach. NTP technology offers great 

significance in controlling pollutant gases as it is characterized by low gas 

temperature and high electron temperature [12-14]. As a result of their rapid 

reactions, high electron energies and simple operation, these methods have shown 

significant outcome [15].  
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Electrical discharge plasma has a great potential on air pollution control as it 

offer advantages of high energy efficiency, low operation cost, easy operation, no-

secondary pollution and able to remove various pollutant simultaneously [16]. NTP 

discharge can be generated by diversity of electrical discharges including dielectric 

barrier discharge, pulsed corona discharge and dielectric-packed bed reactors.  

 

 

 

 

1.2 Problem Statement  

 

 

A keen interest toward establishing more effective pollution control 

technologies are owing to the increasing concern about the environmental problems. 

Many conventional methods such as Selective Catalytic Reduction (SCR), exhaust 

gas recirculation (EGR) and Electron Beam method could not reduce the level of 

exhaust gases to stipulated limits put across various countries. Literature often tends 

to show that SCR technique could not treat the pollutant gases completely because 

requires strict operation conditions while the Electron Beam technique needs high 

energy [17, 18].  

 

 

SCR also facing several problems such as ammonia slip, requirement for urea 

distribution network and ammonia storage. Moreover, these conventional methods 

sometimes have difficulties in disposing the harmful by-products and become 

dangerous to handle. Therefore, the conventional techniques are still in negative 

condition for reducing of pollutant gases.  

 

 

The upcoming technology being used for air pollution control application is 

the electrical discharge plasma methods as it is cost effective and has high energy 

efficiency [19-24]. Several techniques have been widely studied by many researchers 

for removal of hazardous gases, for example; dielectric barrier discharge, surface 

discharge, DC and pulsed corona discharge and dielectric-packed bed discharge. 
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The electrical discharge plasma can facilitate the removal of pollutants by 

generating reactive species (radicals). However, electrical discharge plasma alone 

cannot attain high pollutant removal from diesel engine exhaust. This demands the 

discharge plasma to be combined with others after treatment techniques such as 

hybrid plasma techniques which is a combination of NTP with catalyst. Application 

of very short high voltage pulses also has a great influence on the energy efficiency 

of the removal of pollutant gases. 

 

 

The main focus of this research is to design an optimum prototype of a 

cascaded pulse streamer discharge plasma chamber as an excellence removing 

medium of pollutant gases from diesel engine exhaust. This plasma reactor is made 

cascaded so that the gas treatment process able to be conducted in three stages to 

fully cover the exhaust gas path to have a more efficient treatment. 

 

 

 

 

1.3 Objectives 

 

 

The aim of this project is to study the removal rate of NOx from diesel engine 

exhaust by cascaded pulsed streamer discharge plasma. This aim will be met through 

these objectives:  

 

 

1. To design a novel prototype of portable cascaded pulsed streamer 

discharge plasma reactor which is possible to be installed at diesel engine 

exhaust system 

2. To analyse the design performance of cascaded pulsed streamer discharge 

plasma chamber on removal of NOx from diesel engine exhaust 

3. To develop a mathematical model for prediction of NOx removal 
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4. To compare the theoretical modelling results with experiment results in 

order to improve the removal mechanisms and the effects of system 

parameters on overall removal efficiency 

5. To optimize the removal rate of NOx by cascaded pulsed streamer 

discharge plasma method 

 

 

 

 

1.4 Scope of Project 

 

 

The following scope of work will be done in order to achieve the objectives 

of the project. 

 

 

1. A literature study (journal, articles, book etc) on various types of non-

thermal plasma reactor used in removal of pollutant gases from diesel 

engine exhaust vehicles. 

2. Focus on removal of NOx released from diesel engine exhaust system by 

using cascaded pulsed streamer discharge plasma method. 

3. Design of cascaded pulse streamer discharge plasma chamber by using 

Solidworks. 

4. Analysis on design performance of cascaded pulsed streamer discharge 

plasma chamber using Commercial Computational Fluid Dynamics 

(CFD), Ansys Fluent 14. The optimum parameters that have significant 

effects on the removal of NOx as well as on the engine performance were 

identified. 

5. Development of mathematical modelling for the discharge chamber by 

using dimensional analysis. It is necessary to determine the significant 

electrical and physical parameters that influence the removal rate of NOx. 
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1.5 Thesis Outline 

 

 

This thesis comprise of five chapters. Each chapter is briefly discussed as below: 

 

 

Chapter 1 is the introduction of this research study which includes brief 

description on background of study, problem statement, objectives and scope of 

project. 

 

 

  The literature review of this project is being discussed in Chapter 2. Noxious 

effect of NOx pollutant and various types of non-thermal plasma reactor used for 

abatement of this pollutant from diesel engine exhaust are further elaborated. It also 

summarizes several aspects of NOx removal including an overview of diesel engine 

emission reduction strategies. 

 

 

Chapter 3 describes the methodology of the project. This chapter provides the 

design of cascaded pulsed streamer discharge plasma chamber using Solidworks. The 

materials and dimensions used in the design of cascaded discharge chamber are 

briefly explained in this chapter. This chapter also summarizes two methods used in 

this research work to predict the removal of NOx from diesel engine exhaust. The 

first section describes the flow analysis of exhaust chamber conducted using 

commercial CFD followed by second section which discussed the mathematical 

modelling by using dimensional analysis.  

 

 

Chapter 4 covers results and analysis and presents all the obtained results and 

provides an analysis for the findings. The first section presents the results of output 

performance of exhaust chamber on the removal of NOx and flow field using 

commercial CFD for different gap spacing, diameter of hole of perforated metal, 

exhaust chamber length and numbers of stages. The plot of pressure and velocity are 

also included to show the effect of reaction on the flow field of the exhaust chamber. 



9 
 

The next section presents the steps to obtain a general form of equation that define 

the relationship of the electrical and physical parameters on NOx removal. It also 

covers the comparisons of the mathematical modelling using dimensional analysis 

with experimental results reported in the previous research.  

 

 

Chapter 5 summarizes the conclusions made in the present study and 

recommendations for future studies in this area. The conclusions are written based on 

the results obtained in Chapter 4, whereas the recommendations for future research 

are made due to their significance with the current research. 
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