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ABSTRACT 

 

 

 

 

III arsenide semiconductor materials have attracted considerable attention 

because of their unique characteristics and unfailing applications as base materials in 

optoelectronics and many other state of the art technologies. In this study, III 

arsenide investigations are presented by performing calculations using computational 

approach framed within the density functional theory. Exchange-correlation energy 

functional plays a crucial role in the efficiency of density functional theory 

calculations, more soundly in the calculation of fundamental electronic energy band 

gap. In this density functional-theory study of III arsenide, the implications of 

exchange-correlation energy functional and corresponding potential were 

investigated on the structural, electronic and optical properties of III arsenides. For 

structural properties, local density approximation, generalized gradient 

approximation and parameterized generalized gradient approximation were applied. 

For the calculations of electronic properties, recently developed Tran-Blaha modified 

Becke-Johnson potential has been implemented additionally. To execute this study, 

state of the art computational code WIEN2k, based on full potential linearized 

augmented plane-wave and local orbitals methodology, was applied. III arsenide 

were simulated to obtain their lattice constant, band gap, dielectric constant, 

reflectivity, absorption, refraction index and the energy loss values. The results point 

to parameterized generalized gradient approximation as a more appropriate 

approximation for the calculations of structural parameters. However, the electronic 

band structure calculations at the level of modified Becke-Johnson potential showed 

considerable improvements over the other exchange correlation functionals. Besides 

this, the reported results related to optical properties within modified Becke-Johnson 

potential show a good agreement with the experimental measurements in addition to 

other theoretically results. 
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ABSTRAK 

 

 

 

 

Bahan semikonduktor III arsenida telah berjaya menarik perhatian yang 

meluas kerana cirinya yang unik dan kejayaan penggunaannya sebagai bahan asas 

dalam optoelektronik dan teknologi moden yang lain. Dalam kajian ini, penyelidikan 

III arsenida dijalankan dengan melakukan pengiraan menggunakan pendekatan 

pengkomputeran berdasarkan pendekatan teori fungsi ketumpatan. Fungsi bagi 

tenaga pertukaran korelasi memainkan peranan yang penting dalam ketepatan 

pengiraan fungsi teori ketumpatan, terutamanya dalam pengiraan asas  jurang jalur 

tenaga elektronik. Dalam teori fungsi ketumpatan kajian III arsenida, implikasi 

hubungan antara fungsi bagi tenaga pertukaran korelasi dan keupayaan yang sepadan 

terhadap ciri struktur, elektronik dan optik dalam III arsenida telah diselidiki. Bagi 

sifat struktur, penghampiran kepadatan tempatan, penghampiran kecerunan teritlak 

dan penghampiran kecerunan teritlak berparameter telah digunakan. Bagi pengiraan 

sifat elektronik, keupayaan Becke-Johnson terubahsuai Tran Blaha yang 

dibangunkan baru-baru ini telah diguna pakai sebagai pelaksana tambahan dalam 

penyelidikan ini. Untuk melaksanakan kajian ini, kod pengiraan termaju WIEN2k 

berdasarkan keupayaan penuh dengan satah gelombang lelurus berserta kaedah 

orbital tempatan, telah digunakan. Simulasi ke atas kumpulan III arsenida telah 

dilakukan bagi mendapatkan nilai pemalar kekisi, jalur tenaga, pemalar dielektrik, 

pantulan, penyerapan, indeks biasan dan nilai tenaga yang hilang. Keputusan 

mendapati penghampiran kecerunan teritlak berparameter adalah pendekatan yang 

lebih sesuai untuk pengiraan parameter struktur. Walau bagaimanapun pengiraan 

struktur bagi tenaga elektronik di peringkat Becke-Johnson terubahsuai menunjukkan 

potensi kemajuan yang agak  besar berbanding fungsi-fungsi korelasi pertukaran 

yang lain. Selain itu laporan keputusan bagi ciri optik dengan menggunakan 

keupayaan Becke-Johnson terubahsuai menunjukkan keputusan yang memuaskan 

hasil perbandingan antara nilai eksperimen dengan nilai kiraan teori yang lain. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 
1.1 Background  

 

 

III arsenides compound semiconductors play an important role in established 

commercial technologies especially in electronic, microelectronics and 

optoelectronic devices, such as lasers, modulators, light emitting diodes, photovoltaic 

cells, photo detectors, filters, and also in new technological applications. All these 

devices, based on III arsenide semiconductors, are showing appreciable efficiency 

and demonstrating multi benefits in different applications. Although each compound 

of III-V exhibits important properties, III arsenides (a family of III-V conventional 

semiconductors) cover the widest range of energy gaps. These materials almost cover 

the whole visible spectrum from red to violet light. This feature has made III arsenide 

materials, a potential candidate for many advanced technologies specifically for 

optoelectronic systems and devices. At ambient temperature and pressure, III 

arsenides have been recognized to be stable in their zinc blende (ZB) structure. 

Reported   in available experimental and theoretical studies, Boron Arsenide (BAs) 

and Aluminium Arsenide (AlAs) have the indirect band gap structure, whereas 

Gallium Arsenide (GaAs) and Indium Arsenide (InAs) are of direct nature. On 

account of their peculiar nature of physical properties and substantial applications in 

commercial technologies, in particular, electronic and optoelectronic devices, III 

arsenides are widely explored. 
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 The rapid advancements in the field of information technology and device 

applications demands a dire need to further investigations related to this class of 

materials to exploit their hidden potential for future applications. Investigations of 

the physical properties of materials at atomic scale and their exploitation are very 

important and challenging. Fundamental understanding of the physical properties at 

atomic scale requires the application of quantum mechanics but to explore the 

properties of materials at atomic scale is a time taken and a complicated problem. To 

overcome this difficulty, first principles based computational approaches are 

considered to be more reliable tool because of their ability to explore the physical 

properties of materials with high accuracy in short time and reduced cost in 

comparison with experimental study.  

 

 

These charming features of computer simulation motivated us to do 

investigation of some fundamental properties for III arsenides by using density 

functional theory (DFT) [1, 2] based method of calculations. It is because, among III 

arsenides compound family, BAs, AlAs, GaAs and InAs are the most significant due 

to their potential applications in semiconductor industry.  Also the structural and 

electronic properties of these materials are of considerable importance in both 

fundamental and applied physics, and extensive research is going on at both levels 

(experimentally and theoretically) due to their potential applications in 

electronic/optoelectronic devices [3-34].  

 

 

 

1.2 Problem Statement 

 

 

To study the structural, electronic and optical properties of the materials, it is 

important to understand their features. To take insight view of these properties 

theoretically, a systematic solution of Schrodinger many body equation is crucial. 

The solution of the Schrodinger much body equation analytically is too difficult. 

However DFT based computational approaches provide a way out to simplify such 

kind of complex problem by transferring the many body equation into one particle 

independent Kohn-Sham equations. 
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Though the investigations regarding structural, electronic, and optical properties 

of III arsenides have been discussed in a number of studies, there is still problem in 

doing calculation accurately comparable to the experimental value specifically 

electronic properties within standard DFT. To address this crucial problem of DFT, 

different exchange correlation (XC) functionals have been implemented in this study 

to investigate III arsenides structural, electronic and optical properties. The 

calculations of lattice parameters, bulk moduli, electronic band structure, energy 

band gap along with optical parameters is presented comprehensively.  

 

 

In this research, LDA, PBE-GGA, and WC-GGA exchange-correlation 

functional are employed within DFT to deal with structural parameters.  For the 

electronic properties, modified Becke-Johnson (mBJ) exchange potential 

incorporated into standard LDA and GGA is additionally applied. Furthermore, the 

obtained results in this research work with different approximations are compared 

with the previously reported experimental and theoretical works. 

 

 

 

 

1.3 Objectives 

 

 

The main interest of this research is to understand and apply state of the art of 

full potential linearized augmented plane-wave plus local orbitals FP-

L(APW+lo) approach to perform a study on the structural, electronic and optical 

properties of III arsenides (BAs, AlAs, GaAs and InAs).                                                                                                                                            

 

The objectives of this study are as follows: 

 

1. To investigate the structural, electronic and optical properties of III arsenides 

(BAs, AlAs, GaAs and InAs) in their zinc blende (ZB) phase. 
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2. To study the impact of different approximations on the structural, electronic 

and optical properties and to find out which approximation provides better 

choice for reliable results in comparison to experimental values. 

 

3. To investigate the effectiveness of FP-LAPW approach using WIEN2k code 

on the properties of III arsenides. 

 

 

 

 

1.4 Scope of Study  

 

 

A right knowledge of the physical properties of III arsenides compounds is 

crucial for their prospect applications. This study may be a good addition in the body 

of knowledge concerning different properties of III arsenides materials and their 

suitability in present and future applications as well performed within different 

exchange correlation functional. In this research work, the ZB structures of III 

arsenides were simulated using experimental values of lattice parameters. For the 

investigations of physical properties of these materials, DFT based FP-L(APW+lo) 

methodology is employed. To realize these properties, computations are carried out 

taking into account relativistic effect within scalar relativistic approximation. To 

determine structural properties, the exchange–correlation energy of electrons as 

depicted in LDA, PBE-GGA and WC-GGA is used. For band structure calculations, 

in addition to LDA and GGA, the modified Becke-Johnson (mBJ) exchange potential 

is also used that allows the reproduction of band gaps values with accuracy similar to 

very expensive GW calculations. Furthermore in this study, for optical properties, we 

use mBJ+LDA and mBJ+GGA. From here we can see the suitability of each 

approach in calculating the properties of III arsenides. In short; 

 

1. III arsenides are studied in their zinc blende phase structures 

2. Lattice constants, bulk modulus and  its pressure derivative, and total 

energy for each compound of III arsenides are studied for the structural 

properties. 
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3. Band structure and band gap energy are studied for the electronic 

properties. 

4. The dielectric function, absorption, reflectivity, refractive index and 

energy loss are studied for their optical properties. 

5. Density functional theory is used to calculate and simulate the structural, 

electronic and optical properties of III arsenides. 

 

 

 

1.5 Significance of Study 

 

 

The efficiency of a device not only depends on the quality of its engineering, it 

also requires clear knowledge about the physical properties of the base material, and 

the understanding of fundamental science behind their characteristics. It is therefore 

very important to know the different properties of the III arsenides to expose their 

further potential. The findings of this study related to the structural, electronic and 

optical properties of III arsenides compounds using different approaches of exchange 

correlation functional will also be useful to design new materials as well as to 

investigate the properties of known materials for academicians and industrial 

researchers. Also our findings related to III arsenides lattice parameters, band gap 

values, band structure, bulk moduli and optical parameters will play important role to 

widen further spectrum of the III arsenides applications and to determine the 

effective usage of these materials in the semiconductor devices. By calculating these 

properties, we can obtain the informations of these materials. The study of these 

properties also may be helpful in the specifications needed for its quality control for 

the material’s production in different applications. Besides that, this computational 

calculation enables the system to be investigated where experiments are very 

expensive which is difficult or even impossible to perform. 
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1.6 Previous Studies 

 

 

III-V semiconductors are essential for their unfailing applications as base 

materials for device fabrications in current and future electronic, microelectronic and 

optoelectronic industries. Among these, III arsenides are of particular interest for 

their unique physical properties like wide band gaps, low density, high thermal 

conductivities, and dielectric constants [30]. At ambient temperature and pressure, III 

arsenides have been recognized in zinc blende (ZB) stable structure. Their 

fundamental band gap both experimentally and theoretically is reported indirect for 

BAs and AlAs and direct for GaAs and InAs. Also III arsenides almost covers whole 

visible spectrum from red to violet light. These properties have made this class of 

materials potential candidate for light emitting diodes, lasers, photo detectors, 

integrated circuits, modulators, filters, and many more other advanced technologies. 

On account of their peculiar nature of physical properties, and substantial 

applications in commercial technologies specifically in electronic and optoelectronic 

devices, III arsenides are widely explored [3-34] 

 

 

Each member of this group demonstrates unique electronic structure and 

corresponding physical properties. BAs exhibit strong covalent nature [27], and have 

analogous electronic nature to silicon that led it unique among the other III 

compounds [28]. Being a wide band gap semiconductor BAs is considered a suitable 

partner for alloying with GaAs and AlAs [29]. However because of difficult 

synthesis of BAs its properties are under debate [36]. Similarly GaAs, owing to 

direct wide band gap and having small effective mass of electrons, besides many 

other applications, is exploited as ultra fast transistors especially where reliability is 

the main point. Likewise, InAs and AlAs play fundamental role as a part of many 

optoelectronic heterojunction devices and systems. The operating features of these 

electronic and optoelectronic devices require a fully understanding of the properties 

of materials, and the fundamental science behind these properties on its material 

engineering and also at practical level. Because of technological importance, clear 

understanding about physical properties and their science is very essential. Therefore 

experimental and theoretical investigations are of fundamental interest. 

 



7 
 

Theoretically, most of the studies are performed using first principles 

approaches: Chimot et al. [98] have studied structural and electronic properties of 

BAs, GaAs, InAs and there alloys within the DFT framework of virtual crystal 

approximation. They have recommended III arsenides materials and their alloys as 

an alternative to the InP substrate, for the epitaxial growth of nanostructures to 

fabricate field effect transistors, lasers and storable absorbers in the field of 

optoelectronics. Zaoui et al. [37] and A. Boudjemline et al. [38] have reported the 

electronic and optical properties of BAs using LDA and GGA within DFT. Using a 

FP-LAPW method Arabi et al. [25] have studied structural and electronic structure of 

GaAs in four different phases. Ahmed et al. [4] have also investigated structural and 

electronic properties of III arsenides using LDA, GGA and GGA proposed by Engel-

Vosko (EV).  Amrani et al. [39] have studied the structural parameters, electronic 

and optical properties and variation in it under higher pressure using FP-LAPW 

method using LDA as an XC potential. Ground state and high pressure structural 

parameters were also investigated by Wang et al. [40] using full potential linearized 

muffin-tin orbital (FP-LMTO) scheme at the level of GGA within the frame work of 

DFT. Similarly Hart et al. [29] have investigated ground state as well as electronic 

properties of BAs, AlAs, InAs and GaAs within DFT using LDA approximation. 

Most recently Guemou et al. [41] have studied the structural and electronic properties 

and optical properties of BAs, GaAs and their alloys using LDA and GGA. Although 

a sizeable number of theoretically investigations have been reported in literature 

previously using different forms of exchange correlation functional, mostly 

reproduce underestimated values of fundamental band gap values especially in case 

of semiconductors and insulators and corresponding optical properties. 

 

 

Right knowledge of fundamental and optical band gap is important in the study 

of physical properties of materials as it play decisive role for their applications as a 

base material in electronics and optoelectronics devices, to exploit their potential for 

further applications. Though DFT based on computer simulation have made it 

possible nowadays to investigate electronic band structure at atomic scale and the 

corresponding fundamental properties of materials in amazingly short time with low 

cost, and have predicted the properties of materials that yet not synthesized, 

reproduction of accurate electronic band gap within conventional DFT is not 
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straightforward. It is because DFT is basically designed to cope up ground state 

properties, however to overcome this difficulty a proper choice of XC potential 

functional is crucial to reproduce electronic band gap and optical properties 

comparable to experimental measurements. One of them is the Tran- Blaha (TB) 

modified Becke Johnson (mBJ) XC potential, which has been reported in several 

studies of semiconductors and insulators to calculate energy gap with high accuracy 

or near to the experimental value. The highly accurate results at effectively low cost 

have proclaimed mBJ as superior on other approaches. 

 

 

Motivated by fascinating features of DFT computer simulations, the important 

applications of III arsenides in cutting edge technologies and balance role of 

mBJ+LDA exchange and correlation potential to reproduce band gap for 

semiconductors and insulators, we investigate some of fundamental properties of III 

arsenides using FP-L(APW+lo) framed within DFT [2,42]. However to investigate 

the response of XC-potential to band gap calculation we employ mBJ+LDA in 

addition to LDA, PBE-GGA and WC-GGA.  Calculations are also performed related 

to optical properties. 

 

 

 

 

1.7 III-V Semiconductors 

 

 

III-V semiconductors are formed by chemical elements from group III and V 

with every atom group of III is bound to four atoms of group V atoms and every 

group of V atom is bound to four atoms of group III atoms in the crystal structure of 

III semiconductors. These III semiconductors are able to build binary, ternary, 

quaternary and also higher-order compound to provide extensive potential for 

engineering of the semiconductor band gap and the related emission or absorption 

wavelength which are vital properties for optoelectronic and microelectronic 

applications. 
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1.8 Modeling and Simulation 

 

 

A set of mathematical equations or physical model is used in modeling 

technique in order to clarify it as a real system. By changing its variables, according 

to their behavior and performance of the system, prediction can be made. Computer 

simulation helps to see how the system works on the models and therefore a study on 

the models can be made. Computational science has become a vital tool in modeling 

and simulation. Modeling and simulation are usually achieved by the aid of 

computational science and therefore they are always referred to computer modeling 

and computer simulation. Computational science could be defined as an 

interdisciplinary approach that uses concepts and skills from the science, computer 

science and mathematics disciplines to solve complex problems in the study of 

various phenomena which can be illustrated by Fig. 1.1. 

 

  

  

 

 

 

 

 

 

 

 

 

Figure 1.1: Computational science is defined as the intersection of the three 

disciplines, i.e. computer science, mathematics and applied science. 
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