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Abstract

The paper presents the spectral method known as Fast Fourier Transform (FFT) to
compute discrete convolution integrals. Geoid heights are computed by reformulating the
Stokes' equation in convolution form and using gridded residual gravity anomalies
as input data. Discrete spectra of the kernel functions are used for the geoid heights
appending simultaneously zero-padding around the input gravity matrix in order
to avoid circular convolution effects. This procedure provides identical results to
those from the rigorous numerical integration. The computed quantities are
compared to a set of geoid heights derived from a contribution of GPS traverse with
levelled orthometric heights.

1.0 INTRODUCTION

Nowadays, the geoid heights covering a national territory are considered of very important information
which should be available to users of applied geodesy, geophysics and other branches of geosciences and
ocean sciences. Among others, a detailed geoid representation fulfills some of the requirements for a
definition of a national vertical datum. Nowadays, with the rapid expansion of applications of the GPS
positioning and the improvement of positioning accuracy, there is a need for gravimetric geoid of high
accuracy for GPS-levelling, i.e GPS-derived orthometric heights. Rigorously, the geoid is defined as an
equipotential surface of the earth's gravity field corresponding to the mean sea level, see Figure: 1.0.
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Figure: 1.0 - Geoid and Mean Sea Level.

The problem of geoid determination may be viewed in the wider context of geodetic gravity field
modelling, i.e. given some quantities - 'observations' of the earth's gravity field, what are the other
quantities - 'prediction’. This boundary value problem deals with the determination of potential,



harmonic outside the masses, from gravity anomalies given everywhere on the geoid surface. The
geoid height can be determined using the following expression (Heiskanen and Moritz, 1967):

e . 1)
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where do is the element of unit sphere, Ag is the gravity anomaly, R is the radius of the carth and S(y)
is Stokes’ function given by:

1 . , .
S(y) = —— ~6Sin¥ +1-5Cosy - 3Cosy n(SinL + si? ¥y . @)
. 2 2 2
Sin(--)
2
\ is the spherical distance between the data point (¢,)) and the prediction point (9,,A,).
In principle, equation (1) can be approximated by a series expansion of spherical harmonic coefficients

which is referred to the Geodetic Reference System 1980 (GRS80), The solution is called geopotential
model solution (Ngy):

Py M=n
Noy = kM >3 P, Cosf(C,,Cosma +8,,Sinmd) .. 3)
y R fi=2 m=0
where C_., S,, are the fully normalized geopotential coefficients;
P, is the Legendre function;
K is the Newton’s Gravitational Constant; and
M is the mass of the earth,

The geopotential model solution forms the basis for all local approximation of the gravity field, i.e. to
provide the long to medium wavelength of the gravity field spectrum. It should be noted that for local
geoid modelling, the gravity anomalies used with Stokes’ integral in equation (1) contain the
contributions for the topography (short/very short wavelength of the gravity field spectrum), especially
in the mountainous regions. In practice, therefore, the procedure of local geoid modelling involves the
remove stage (pre-processing) and the restoration stage (post-processing) of the topographic and
geopotential mode! contributions as follows:

Ag = Agfroc—m'r = Ag geapotential mode! © Agmpo ==> Remove stage e (4)
N = Ngeopolemia! model + Nsravit}' + Nmpo {indirect effect) === Rcstoration Stage ----- (43}

The modelling procedure for local geoids can be implemented by using Stokes’ integral
(space domain numerical integration), Least Squares Collocation (LSC), Point Mass Fitting or Spectral
method. This paper highlights some basic algorithms of the spectral method which is known as Fast
Fourier Transform (FFT) and its evaluation of Stokes’ integral for gravimetric geoid determination.

2.0 THE NEED FCR SPECTRAL TECHNIQUES

Due to the fact that it is very time consuming to evaluate Stokes’ integral, it is often attempted to
reduce the size of the area by modifying the Stokes’ kernel function. The basic idea, was first presented
by Molodensky et.al. (1962) which reduces the truncation error by a suitable modification of Stokes
kernel, and this approach was implemented in Vanicek and Sjoberg (1989) and Featherstone (1993).
Truncation error is the error caused by limiting the area of the integration of the terrestrial gravity
anomaties to a spherical cap.

The LSC method which is theoretically sounds unfortunately suffers from practical disability since it
generates a system of equations of order equal to the number of observation points. This kind of
method increases the requirements of the computing resources especially when the data volume
increased dramatically, both in quantity and in type. The applications of the LSC method requires the
choice of a reproducing kernel, that is a local covariance function. As a matter of fact, the
implementation of the LSC method relies fundamentally on the capacity of modelling a suitable
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One of the basic properties of the 2-D Fourier transform is the convolution (frequency domain
convolution) of the two functions, denoted by symbol * :

h{x,y) * g(x,y) & Hu,v) G(u,v) or h(x,yv)g(x,y) eHuy) * G(u,v) 1D

The simple spectral representation of the above equation is of great practical importance. In general,
the process involves two direct and one inverse Fourier transforms :

x®=g®)*he (12)
= F'{F(g(t)Fhit))] --(123)

where t is time (periodic with period T which can be related to trequency Aw=2n/T) or, usually
distance in geodetic applications.

In practice, the estimation of the spectrum in a finite area (say -X/2<x<X/2, -Y/2<y<Y¥/2) can only be
obtained by the finite integral. Therefore, equations (5) can be rewritten as:

X/ ¥i2
H.(u,v) = j jh,,-(x,y)e_z”f("‘*"”)dxdy ..... (13)

-Xi2-¥i2

Since the data are assumed to be known only at a discrete points of a regular grid with sampling
interval Ax, Ay then the record lengths may thus be expressed by :

X=Mdx, Y=My . (14)
where M and ¥ are the number of points along the x and y directions, respectively.

With the discrete given data, the spectral estimation integral of equation (13) may now be
approximated by a sum of:

M=-1N-1

Hy(u,,v,)= 2. h(x,,y,)e 7o) AxAy ni(15)

k=0 {=0
wherem=0,1,2,...,  M-1, n=0,1,2,..., N1,

Assuming the data to be periodically extended in the plane, the spectrum becomes discrete with
frequency spacings, see Figure: 2.0.

:-—-—-——1-—, Av:
MAx
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Figure: 2.0 - The Relationship between space domain and frequency domain

Therefore, in terms of a discrete Fourier transform pair, the spectral transformations may be written as:

M-15-I mk nt‘l
H(mAu,nAv) = AxAyZ Z h(kAx,lay) exp(—2m’[— +—=D (17
k=0 1=0 M N
A1 M-t mk nt?
h(kAx,IAY) = AuAv Z Z H(mAu,nAv) exp(—27ri[— + )) ..... (18)
M=0N=0 M N
where k, /, m and n are the integer wavenumbers; m=0,1,2, ... . M-1; n=0,1,2..... N-1;

k=012 ....M-1;/=0,12 .. NI

This is the basic form of the FFT algorithm used to evaluate the Discrete Fourier Transform (DFT).
Here, the FFT is an algorithm for computing the DFT much faster (number of required complex
multiplications proportional to Nlog,¥) than by the conventional Fourier transform {(number of
required complex multiplications proportional to N°), To illustrate the FFT algorithm, the intuitive
development presented in Brigham (1988) for 1-D FFT is given in Appendix 1.

4.0 STOKES’ INTEGRAL IN THE FREQUENCY DOMAIN

The contribution of the gravity anomalies can be computed in variety of ways. For a small distances
inside the area of integration, the planar approximation of Sokes’ Integral can be used where the first
term of S(y) in equation (2} being the dominant one. Using the planar distance /, where /=Ry, then
equation (1) is reduced to:
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1 2R
<52 (19)

7"\-’_2_
W oy
Sin(~

m(z)

If we use rectangular coordinate instead of polar coordinate to describe the area of integration, we
have:

Rido=axdy (20)

Thus, equation (1} can be rewritten as:

Ag(x )
(xp )p) '“.—"'y—dXdy ..... (2])
=Mx-xy+ -y (22)

where x, y are the coordinates of the data points and x,, v, are the coordinates of the computation point.

Now, with respect to the properties of the Fourier transform given by equations (12) and (12a), the
above equation can also be formulated as 2-D convolution integral ;

1
N=EEAg(xp,yp)*fN(xp,yp) ..... (23)

where / is the planar form of Stokes” kernel function, given by:

WXy =o'+ (24)

Consequently, equation (23 ) can be evaluated as follows:

N =l (PG, y VF G e 25)
2ry
L FYAGuWLy(wyy L (25a)
27y

4.1 Point Gravity Anomalies as Input Data
Using (M x N) gridded point anomalies with spacing (Ax,Ay) the geoid height of a point (x,, y;) can
be estimated by the following discrete convolution:

M-IN-1

Ag(xny,;)zh'(xk —X oy Ay (26)
2737 i=0 j=0

where /, is the inverse geometrical distance between the points (j-k) and {j-7).

((xk_x;')2+(y,f_yj)2)_”23 xk ixjsy.’iyj
Le(xy =%y, —y;) = _ 3
0, Xe =XV =Y
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The geoid heights can then be evaluated by the FFT as follows:

N=—p (AG(u,,,v) L, (u, v,y L. (28)
2my

AG has to be computed by the DFT of equation (17):

AM=-1N-1 it mk+n.f)
AG(u,,v,) = F(Ag(x,,y, ) = z Ag(x, .y, )e MM AxAy 29
k=0 I=
and Ly(u,,,v,} can be evaluated by ;
M-1N-1 _izﬁ(rrlk+rl.f
Ly, v,) = Fly (e, )= 2, 2 v(xup)e M ¥ AxAy (30
£=0 /=

4.2 Mean Gravity Anomalies as Input Data
If the input data are (M x N) gridded mean anomalies Ag, the planar Stokes formula can be formulated
as;

] MaNo B
N=2_—ZZAg(xuyJ)IN(xk_x;ay:_,VJ-) ..... (31)
737/ i=0 =0

where / is the mean Stokes kernel spectrum given by

Iv = xIn(y + (2 +pH)"7 + yln(x +(x2 + y*)"), ii tiii i: J_rii ; i‘
..... (32)
Equation (31) can also be efficiently evaluated via FFT:
N= 2—1];}/—1?‘1 {(FlAg(x y DFUn(x, -y Y .. (33)
ar
N = % FY(AGw, v)L,(w,v,) .. (33a)

Details of the implementation of the above formulas can be found in Sideris and Tziavos (1988).

5.0 CIRCULAR CONVOLUTION AND EDGE EFFECTS
In the practical implementation of the Fourier formulas, usually there are two approximations
employed:

(a) Continuous integration are replaced by discrete summations, and
(b) The infinite limits of summation are replaced by finite one
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Discretization of equation (12) for both functions g{t} and h{t) at ¥ points results in the following
expression:

x(k)= S gDk DAt =gy *h(ky . (34)
=0

where At is the time spacing which can be related to frequency spacing A® and the numbers of discrete.
points N as 1/Aw = NAT, In practice, N is much easier to control than At but it will always be a finite
number and the leakage effect will always be present.

When the above equation is.evaluated by numerical summation, the results is correct and correspond to
linear convolution. If, however the discrete forms of equation (12a) is used instead, i.e.

xk) = FU{F@g()FR,G L (35)

The above function is treated as periodic (subscript p), the results are incorrect and correspond to
circular convolution (Oppenheim and Schafer, 1989). Hence, the equation (34) indicate that if g(k) and
h(k} have N values each, the x{k} will have 2N-7 value. On the other hand, when equation (35} is
evaluated by the (periodic)} DFT, it is clear that the resulting x(k) will has N values and will be
periodic, as well. Mathematically, convolution can be viewed as linear convolutions contaminated by
aliasing. Therefore, it should be noted that Stokes' formula is mathematically expressed by linear
convelutions (equation 23) while most FFT algorithms are designated for the computation of circular
convolutions, (ibid). Obviously, such approximation will intreduced errors due to the truncation of the
series that may be significant for the propetties of the transformed functions. Distortion of the results
will occur due to edge effects introduced by using the circular convolution instead of the linear
convolution, see Figure: 3.0.

computation computation computation computation
of middle point  of corner point of middle point  of corner point

- NS
kernel = .@%

(a) numerical integration (b) circular convolution
without zero-padding

kemnel

(c) circular convolution
100% zero-padding on
both Ag and kernel

Figure: 3.0 - Edge effect and circular convolution in FFT evaluations of Stokes’ Integral
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Figure 3.0 illusirates the effect of circular convolution when the computation point is either at the
centre or at a corner of the computational area. The small circle represents the computation point for
the geoid height and at the same time, the maximum kernel function value. Figure 3(a) shows the
correct kemel function corresponding to the numerical integration whereas Figure: 3(b) gives mirrored
kernel function of the circular convolutions. When the computation point is not at the centre, it can be
seen that the periodically mirrored kernel function values are not correct. One way of eliminating the
edge effect is to append 100% zeros at each row and column of both convolved function, (Bracewell,
1986). In other words, zeros are appended to g(k) and h(k) in equation (36} as follows:

g(lk)0<k <N

RY=ST 0 T 37

&) {O,Nsk<2N G7
MRYO<k <N

H(k)= ) _ =Y (37a)
0O,N <k <2N

In practice, the values of the kernel functions are computed at both the data points and the zero-padded
points. The applications of zeros-padding around the gravity anomalies provides identical results with
those obtained by the space domain integration, see Figure: 3(a) and Figure: 3(c).

6.0 NUMERICAL RESULTS

For the computation of the geoid heights, a set of surface mean 5’x5’ free-air gravity anomalies in a
4°x4° area bounded by the limits 48°< ¢ £52° N, 235°< X <230° W, These gravity data values are
referred to the GRS80 and have been reduced to the surface implied by the OSU91A geopotential
model and topographic contributions, (Tziavos, Private Comm.). The contribution of the such derived
residual gravity anomalies (removing stage) to geoid heights was computed and then to these residual
geoid values, the contributions of the geopotential model and indirect effect were added {restoration
stage}. To assess the quality of the spectral method, the computed geoids {with and without the
application of zeros-padding) are compared with these obtained by space numerical integration. The
statistics found for the different residual geoid solutions is summarized in Table 1.0.

PLANAR FFT
ZERO PADDING
NO YES
No. of Point 1296 1296
Mean (m) -0.26 -0.10
Std.Dev. (m) +0.34 +0.29
Rins(m} 0.42 031

Table: 1.0 - Statistical results of comparison of geoid heights
derived from numerical integration and planar FFT

From Table: 1.0, it can be seen that the FFT computations can be improved by using discrete spectra
for the kernels in combination with zeros-padding. As mentioned i Section 3.0, the application of
zeros-padding therefore significantly reduced the effect of circular convolution The geoid height
differences derived from numerical integration and planar FFT (with zeros-padding) is plotted for a
central part of the test area, see Figure: 4.0.
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Figure: 4.0 - Geoid height differences between Numerical Integration and FFT

In the second numerical test, the relative geoid heights obtained by the FFT technique (with and
without zeros-padding) are compared with corresponding heights derived from GPS ellipsoidal heights
and orthometric heights. The GPS traverse in the test area is a approximately 180km long traverse
consisting of 19 stations. The geoid heights on the 19 control stations of the GPS traverse derived by a
bilinear interpolation technique. The results from this experiment are summarized in Table: 2.0,

No.

Mean (m)
Std.Dev. (m)
Bms (m)

NUMERICAL PLANAR FFT
INTEGRATION ZEROS PADDING
NO YES
18 18 18
-0.28 -0.33 -0.34
+0.48 .48 +0.45
0.54 0.59 0.55

Table: 2.0 - Comparison of relative geoid height derived from numerical integration
and FFT method with respect to 19 controls stations of the GPS traverse
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From the numerical tests for geoid heights performed in this study it appears that the FFT method with
zeros-padding offers slightly better results compared to non-zero-padding solution. It is interesting to
note that the results from the numerical integration is quite identical with those from FFT zeros-
padding. The use of zeros-padding in small areas is still necessary to obtain best results. It showed that
no additional errors will be brought into the results when the FFT method used from the evaluation of
gravity field convolutions.

7.0 CONCLUDING REMARKS

The integral of the form of equation (11} are called convolution integral of the two functions and lend
themselves (o be evaluated by the FFT algorithms. The main advantage of the FFT method is that they
can efficiently handle heterogeneous and noisy gridded data and give results of ail grid points
simultaneously which has made them a standard and is dispensable tool for geoid computations. Thus,
the spectral techniques based on the FFT algorithms overcome very successfully the problem of slow
computation speed, and provide a homogeneous coverage of results which are very suitable for
iriterpolation and plotting purposes. There are some problems that effect the accuracy of the results and
are usually believed to be unique to the FFT method. Actually, many of these problems such as
aliasing and leakage effects are common to all methods (e.g. LSC, Numerical Integration) using the
same data. For example, aliasing effects can be minimised by removing the high frequency information
from topographic reduction to gravity anomalies. Similarly, the leakage effects can also be minimised
by removing the low frequency information from the geopotential model coefficients.

The problem that are indeed unique to spectral method only include edge effect or circular
convolution. The 100% zeros-padding technique can be used to eliminate the circular convolution and
appears to provide identical results with those from the space domain numerical integration.
Consequently, it seem not necessary to modify Stokes’ kernel function which becomes even more
obvious when the remove-restore technique (equations 4a and 4b} is used. Therefore, the FFT
algorithms represent a very attractive alternative to the classical, time consuming approaches, provided
gridded data are available.
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APPENDIX 1
Suppose that the DFT of a function f(k) with N=4 is required. Omitting, for simplicity, the constants in
front of the summation symbol, we have

N-1 N-1
H(m) =Y h(k)e ™™™ = h(k)W*" ,m=0,1,2,3, ... (1)
k=0 k=0

or, equivalently,

HOY (w® w® w° w0
HY | |w° w' W W k)

= . w Tt 2
HQ)| (w° w? w* W h(2) ®
H3)| |w° w? we w’ A3
Since,
WhD = giteN i gy (3)
HO] 1 1 1 1Tk
Hy{ (1 W wr W || k(1) .
€H)| v W ow* w7 v
HB®)| |1 w* w? W' | h@3)

By bit-reversing the indices of H(m) and by factorizing the matrix of W coefficients into log,N
=2 matrices, the above system becomes

H(0) 1w 0o o1 0 w® 0O [AhO0

H| |1 w* 0 o0j0 1 0 W |A) )
Hb| o o 1 w1 o w* ojr2| 7

HB| o 0o 1 w*o 1 0o w | K3

Finally, because W’ = -W’ and W’ = -W', it follows that

HOo] [1 w* o h, (0) RO| 1t o w0 [A(0)
H)| [v -w° 0 RO tAM| 01 0w A
H(D 0 0 1 W |h@7 |AQ2) 1 0 -w° 0 |~(2)
H®»| o o 1 - | 1O R 101 0 W AB
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From equation (6), a flowgraph of operations is constructed and shown in Figure: 1.0.

1 h(0) 1§

h(0) * H(0)

I -WO b
h(1) w R "H(2)

L hy(2)
h(2) H(1)
h(3) H(3)

Figure: 1.0 - Flowgraph of FFT operations for N=4,

The above figure indicates that not only the number of multiplications is reduced but the number of
additions is reduced as well, since each h,(k) is computed only once and then used for the
computations of all H(m} in which it takes part. These are the main reasons that the FFT is much faster
that the conventional Fourier transform, see Brigham, {1988).
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