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ABSTRACT 

 

 

 

 

 

 Naphthalene is one of polycyclic aromatic hydrocarbons (PAHs) compounds 

which have been identified as carcinogenic. It is commonly used in industry and 

domestic. Therefore, it can cause environmental pollution and must be treated. One 

of the promising methods to remove this pollutant from waste water is by using 

photocatalyst since it can degrade the pollutant without producing toxic by-products. 

In this research, two types of photocatalysts namely TiO2/CuO and WO3/CuO were 

prepared with different mass ratio of co-catalyst and it was calcined at various 

temperatures. TiO2 was prepared by sol-gel method while WO3 by aging amorphous 

peroxo-tungstic acid. The characterizations of the prepared catalysts were done by 

XRD, FESEM and BET surface area analyzer. XRD patterns revealed that TiO2/CuO 

calcined at 450 °C and 650 °C consists of single phase anatase and rutile respectively 

while TiO2/CuO calcined at 550 °C consist of a mixture of anatase and rutile. XRD 

patterns for WO3/CuO catalyst indicated that the catalyst consist of single phase of 

WO3. FESEM micrographs showed TiO2/CuO particles were packed loosely 

compared to WO3/CuO particles which were small and packed closely. BET analysis 

discovered that WO3/CuO catalyst has larger surface area than TiO2/CuO catalyst. 

The influence of pH, photocatalyst loading and the uses of different light radiation 

sources were studied. The reaction was monitored by UV-Vis spectrophotometer. 

Photocatalytic reaction performed best in neutral medium irradiated with UV light. 

The optimum mass percent of co-catalyst for both photocatalysts were 10% and the 

calcination temperature for WO3/CuO and TiO2/CuO photocatalysts was 650 °C and 

550 °C respectively. The result indicated that the percentage of photodegradation for 

WO3/CuO and TiO2/CuO in neutral environment was 88.60% and 63.55% 

respectively. TiO2/CuO removed 11.01% and 33.60% of pollutant in basic and acidic 

environment respectively. WO3/CuO degraded 48.03% of pollutant in acidic 

environment while in basic environment it degraded 46.32% of pollutant. The 

optimum photocatalyst loading was 0.2 g for both photocatalysts. 0.2 g of WO3/CuO 

(90:10 650 °C) degraded 93.23% of pollutant while 0.2 g of TiO2/CuO (90:10 450 

°C) removed 60.9 % of it.  
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ABSTRAK 

 

 

 

 

 Naftalena adalah salah satu sebatian hidrokarbon polisiklik aromatic (HPA) 

yang telah dikenal pasti sebagai karsinogen. Ia biasanya digunakan dalam industri 

dan domestik. Oleh itu ia boleh menyebabkan pencemaran alam sekitar dan mestilah 

dirawat. Salah satu kaedah yang berkesan untuk menghapuskankan bahan cemar ini 

daripada air kumbahan adalah dengan menggunakan fotomangkin kerana ia boleh 

menghilangkan bahan cemar tanpa menghasilkan produk sampingan yang bertoksid. 

Dalam kajian ini, dua jenis fotomangkin iaitu TiO2/CuO dan WO3/CuO telah 

disediakan dengan nisbah peratusan jisim pemangkin bersama yang berbeza dan 

dikalsin pada pelbagai suhu. TiO2 telah disediakan dengan kaedah sol-gel manakala 

WO3 dengan mematangkan asid amorfus peroxo-tungstic. Pencirian fotomangkin 

yang disediakan telah dilakukan dengan XRD, FESEM dan analysis luas permukaan 

BET. Pola XRD mendedahkan bahawa TiO2/CuO yang dikalsin pada suhu 450 °C 

dan 650 °C masing-masing terdiri daripada fasa anatase dan rutile manakala 

TiO2/CuO dikalsin pada suhu 550 °C terdiri daripada campuran anatase dan rutile. 

Pola XRD bagi WO3/CuO pemangkin menunjukkan bahawa pemangkin terdiri 

daripada fasa tunggal WO3. Mikrograf FESEM menunjukkan zarah TiO2/CuO adalah 

kurang padat berbanding dengan zarah WO3/CuO yang yang kecil dan padat. 

Analisis BET mendapati bahawa pemangkin WO3/CuO mempunyai luas permukaan 

yang lebih besar daripada pemangkin TiO2/CuO. Pengaruh pH, jisim fotomangkin 

dan penggunaan sinaran lampu yang berbeza telah dikaji. Tindak balas telah dipantau 

oleh UV-Vis spektrofotometer. Prestasi fotomangkin terbaik adalah dalam medium 

neutral dan disinari dengan cahaya UV. Jisim peratus pemangkin bersama yang 

optimum bagi kedua-dua fotomangkin adalah 10% dan suhu pengkalsinan untuk 

fotomangkin WO3/CuO dan TiO2/CuO masing-masing adalah 650 °C dan 550 °C. 
Keputusan eksperimen menunjukkan bahawa fotomangkin WO3/CuO dan TiO2/CuO 

masing-masing menyingkirkan 88.60% dan 63.55% bahan cemar dalam persekitaran 

neutral. TiO2/CuO menyingkirkan 11.01% dan 33.60% bahan pencemar dalam 

persekitaran beralkali dan berasid. WO3/CuO menyingkirkan 48.03% bahan 

pencemar dalam persekitaran berasid manakala dalam persekitaran beralkali ia 

menyingkirkan 46.32% bahan cemar. Muatan fotomangkin yang optimum adalah 0.2 

g bagi kedua-dua fotomangkin. 0.2 g fotomangkin WO3/CuO (90:10 650 °C) 

menyingkirkan 93.23% bahan cemar manakala  0.2 g fotomangkin TiO2/CuO (90:10 

450 °C) menghilangkan 60.93% bahan cemar. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of the Research 

 

 Polycyclic aromatic hydrocarbons (PAHs), refers to a large group of organic 

chemicals that consist of two or more fused aromatic rings and do not carry   

substituents and contain heteroatoms. PAHs usually exist in solid form and range in 

appearance from colorless to white or pale yellow green. PAHs can be found 

naturally in the environment and also can be formed from human activity. They are 

formed during the incomplete combustion of fossil fuel or other organic materials, 

forest fire, volcanic eruption, industrial incineration, industrial and domestic waste 

and smoke from vehicles (Sanches et al., 2011). PAHs are used to make dyes, 

plastics and pesticides and some are even used in medicine (US EPA, 2003).  

 

 PAHs are persistent organic pollutant which can resist to environmental 

degradation through chemical, biological and photolytic processes, due to the 

complexity and high stability of its molecule (Sanches et al., 2011). Due to their 

persistent in the environment, PAHs can be bioaccumulated in human and animal 

tissue and can have significant effects to human health and environment. PAHs are 

well known carcinogenic and mutagenic chemicals which can cause cancer. Some of 

these chemicals can increase the risk of stomach, skin, lung, gastrointestinal, bladder 
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and liver cancer (Wu et al., 2011). Studies reveal that the exposure of PAHs during 

pregnancy is associated with lower IQ and childhood asthma, adverse birth outcomes 

including low birth weight, premature delivery, and heart defects (US EPA, 2008). 

The studies also show that the cord blood of exposed babies shows DNA damage that 

has been linked to cancer, slow development at age three, lower scores on IQ tests 

and increased behavioral problems at ages six and eight (US EPA, 2008 ).  

 

 PAHs pollutant can enter river and lake which are the source of drinking 

water. Drinking water is treated by conventional surface water treatment which 

involves coagulation, flocculation, sedimentation, filtration and disinfection. 

Disinfection involves the use of chlorine which can reacts with natural organic 

matters present in the water and produces harmful by-product that can causes 

different types of cancer and adverse reproductive outcomes (Sanches et al., 2011).  

 

 Due to these problems, an alternative method is needed to treat the waste 

water effectively and efficiently. One of the potential method is advanced oxidation 

process (AOP), a process in which a powerful oxidizing agent (hydroxyl radical, 

•OH) is generated and oxidizes organic molecules to smaller and harmless molecules 

like carbon dioxide (CO2) and water (H2O) (Chan et al., 2012). This process involves 

the irradiation of photocatalyst like titanium oxide (TiO2), zinc oxide (ZnO) or 

tungsten oxide (WO3) with UV light to generate the radical. The energy form the 

light will displace the electrons from the valence band to the conduction band of the 

catalyst, creating an h
+
 hole in the valence band (Robert and Malato, 2002). •OH 

radical is produced by the reaction of h
+
 holes with hydroxyl species (OH) in water 

on the surface of photocatalyst and by the reaction of electrons or oxygen ions with 

hydrogen peroxide (H2O2) (Tryba et al., 2004).  

 

 Photocatalyst is only active under the irradiation of UV light due to its large 

band gap energy. Many studies have bee done to decrease the band gap and to inhibit 

the recombination process by doping it with transition and/or noble, non metal or 

other semiconductors (Tran et al., 2012). In this research, TiO2 and WO3 

photocatalysts impregnated with copper oxide (CuO) as co-catalyst was used to 
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degrade naphthalene, which is the simplest chemical in PAH group and it is listed in 

US EPA priority controlled PAHs.  

 

 

 

1.1.1 Naphthalene 

 

 Naphthalene is polycyclic aromatic hydrocarbon characterized by its white 

crystal and has distinct mothball odor. The molecular structure is shown in Figure 

1.1. It consists of two benzene rings fused together. Among the PAHs chemicals, it is 

the most water soluble chemical with solubility of 25-30 mgL
-1

 at ambient 

temperature, making it the most dominant PAHs found in water.    

  

 

 

Figure 1.1 Molecular structure of naphthalene 

 

 Naphthalene is used as a household fumigant and it is the main ingredient in 

the production of mothball. In agricultural chemistry and textile industry, it is used as 

a wetting agent. It is also used in the production of phthalic anhydride, which is an 

intermediate in the manufacturing of resins, dyes, pharmaceuticals and other products 

(US EPA, 2003). In addition, naphthalene is used to make the insecticide carbaryl, 

leather tanning agents and surface active agents (US EPA, 2003). Crystalline 

naphthalene is used as deodorizer for diaper pails and in toilets.  

 

  According to US EPA (2003), naphthalene can causes hemolytic 

anemia, nausea, abdominal pain, diarrhea, headache, confusion, agitation leading to 

convulsion and coma, damage to the liver and neurological damage if it is inhaled or 

ingested. Haemoglobinuria and haemolysis can occur after 3 to 5 days leading to 
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acute renal failure. The patient’s urine turns to dark brown or black due to 

haemoglobinuria and the presence of naphthalene metabolites. Dermal contact can 

cause irritation and dermatitis and exposure to eye can cause irritation and possible 

injury to the eye. It has been reported that long term exposure to naphthalene causes 

cataracts and damage to the retina. EPA has classified naphthalene as possible human 

carcinogen, which can causes cancer to human.           

 

 

 

1.1.2 Mechanism of Photocatalytic Reaction  

 

 Heterogeneous photocatalysts activity consist of five steps which are 

diffusion of reactants to the surface, adsorption of reactants onto the surface, reaction 

on the surface, desorption of products off the surface, and diffusion of products from 

the surface (Pirkanniemi and Sillanpaa, 2002). When photocatalyst is irradiated with 

light which has energy equal to or more than the band gap energy, the electrons from 

the valence band will be excited and move to the conduction band. This will generate 

redox environment in the system. Figure 1.2 shows the schematic diagram of 

photocatalyst and redox reactions that occur on the surface of the photocatalyst.     

 

 

Figure 1.2 Schematic diagram of photocatalyst and the reactions that occur on its 

surface 
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 The excitation of electrons creates a h
+
 holes in the valence band (hvb+) and 

electron pairs in the conduction band (ecb-) of the photocatalyst as shown in Equation 

1.1 (Puma et al., 2008).  

 

WO3 + hv              WO3 (ecb- + hvb+)       (1.1) 

 

 Photocatalyst particle will reduce and oxidize the surrounding molecules such as 

water, pollutant, hydroxide ion (OH
-
) and oxygen. Generally, acceptor molecule (A) 

such as oxygen will react with the ecb- and donor molecule (D) like water will react 

with the hvb+ (Herrmann, 1999) as shown in the Equation 1.2 and 1.3. 

 

WO3 (ecb-) +A               WO3 + A
-  

                                                  (1.2) 

  WO3 (h
+
) + D             WO3 + D

+
                                                   (1.3) 

 

 The reaction with water molecule is likely to happen than the reaction with 

the pollutant molecule due to the abundance of water molecules in the system.  The 

oxidation of OH
-
 ion or water molecule by the hvb+ hole produces OH• radical, a 

powerful oxidant as shown in Equation 1.4 and 1.5. 

 

    WO3 (h
+
) + H2O               WO3 + •OH + H

+
                               (1.4) 

   WO3 (h
+
) + OH

-
                WO3 + •OH                                   (1.5) 

 

 The ecb- will reduce the oxygen molecule (O2) to produce superoxide radical 

(•O
-
). The reduction process is shown in Equation 1.6. This reaction is important to 

the photocatalyst as it prevent the electrons from recombining with the hole (Al-

Rasheed, 2005).           

 

WO3 (ecb-) + O2                  WO3 + •O2
-
                                            (1.6) 

 

 •OH and •O2
-
 radicals will attack pollutant molecules and degrading it to CO2 

and H2O as shown in Equation 1.7 and 1.8.  

 

•OH + Pollutants         Intermediates        CO2 + H2O          (1.7) 

•O2
-
 + Pollutants        Intermediates        CO2 + H2O          (1.8) 
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1.2 Problem Statement  

 

 As a developing country, Malaysia is experiencing rapid economic 

development and urbanization together with population growth. This can increase the 

use of fossil fuel including petroleum and coal and thus increases the emission of 

PAHs. In addition, Malaysia is oil producing country and its strategic location 

surrounded by the Straits of Melaka makes it one the busiest shipping route in the 

world to transport petroleum form the Middle East to the Far East (Sakari et al., 

2010). The presence of PAHs from petroleum in the environment can causes by the 

introduction of crude oil and oil derivatives via atmospheric transportation, urban 

runoff, oil spills, tanker incident and many other possible ways (Sakari et al., 2010). 

In addition, the heavy usage of petroleum products in domestic and industrial such as 

factories, power plants, transportation and residential areas can release the significant 

amount of PAHs to the environment (Sakari et al., 2010).  The emitted PAHs can 

enter the surface water such as lake, river and sea by precipitance and runoff on the 

ground surface (Wu et al., 2011). PAHs can enter the food chain by depositing in the 

fatty acid of aquatic lives, hence harm the aquatic animals and human (Retnam et al., 

2013). Research done by Sakari et al. (2010) showed that the concentration of PAHs 

coastal region such as Melaka Coast, Tebrau Strait offshore Klang were 700 ng/g, 

900 ng/g and 500 ng/g respectively.  

 

 Generally, PAHs level in river water is at the permitted level except for some 

region in Terengganu, Kedah, Penang, Kelantan, Johor and Negeri Sembilan, where 

the PAHs level is very high (Tran et al., 2012). The high concentration of PAHs can 

harm the human health. The pollutant can enter the river water from oil spills, car 

workshop, sewage discharge, industrial activities and city surface run-off (Sakari et 

al., 2010). Waste water released from power plant also contains high level of PAHs 

since all power plants in Malaysia are burning fossil fuels. 

 

 At the moment, the removing of naphthalene and other PAHs are done by 

biofiltrations, bioreactors, membrane bioreactors, ozonolysis and pulse radiolysis 

(Lair et al., 2008). However, these water treatment techniques have many drawbacks. 
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For example, ozonolysis and pulse radiolysis are expensive and bioreactors treatment 

is too slow. The conventional water treatment also can causes new problem since the 

degradation of naphthalene can introduce new carcinogenic by-product into the 

water. Due to these problems, photocatalyst is used because the treatment is 

effective, easier and cheaper to operate. The process will convert the pollutant to 

harmless substances such as CO2 and H2O. 

 

 Two types of photocatalysts TiO2/CuO and WO3/CuO were prepared. They 

were used to degrade naphthalene as a model sample to CO2 and H2O. These 

catalysts perform better than the single by delaying the recombination of positive 

holes and electrons. Therefore, the photocatalytic activity is increase.  To the date, no 

research was conducted to degrade naphthalene using these catalysts.   

 

 

 

 

1.3 Significance of the Research   

 

 This research is done to find the best method to degrade the naphthalene in 

waste water effectively and efficiently. WO3/CuO and TiO2/CuO photocatalysts 

which expected to have high photocatalytic activity are used. The photodegradation 

is conducted under the radiation of UV light, visible light and sun light. The use of 

solar light for water treatment is important to reduce the operation cost on the future 

water treatment plant since it is free and clean energy. The use of photocatalyst will 

also reduce the possibility of the occurrence of highly toxic by-products because it 

can degrade the naphthalene completely into CO2 and H2O (Lair et al., 2008). 
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1.4 Scope of the Research 

 

 The research work covers the preparation of WO3/CuO and TiO2/CuO 

photocatalysts with different ratio of CuO co-catalyst and different calcination 

temperature. The prepared photocatalysts were tested by photodegrading the 

naphthalene. This research was also conducted for effect of pH of naphthalene 

solution and the use of different amount of photocatalyst loading on photocatalytic 

activity. The photoreaction was conducted under the UV, visible and sun light 

radiation. The characterization of the photocatalyst was conducted by using X-ray 

diffractometer (XRD), Brunauer–Emmett–Teller surface analysis (BET) and field 

emission scanning electron microscope (FESEM). 

 

 

 

 

1.5 Objectives of the Research 

  

The objectives of this research are: 

  

1. To prepare the WO3/CuO and TiO2/CuO photocatalysts.  

2. To find the optimum calcination temperature and the amount of CuO for both 

WO3/CuO and TiO2/CuO photocatalysts.  

3. To characterize the photocatalysts by using XRD and FESEM and BET. 

4. To find the optimum conditions for the photocatalytic degradation of naphthalene 

using the prepared catalysts. 
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