REVERSE LOGISTIC FOR INDUSTRIAL BUILDING SYSTEM CONSTRUCTION PROJECT

MOHANAD KAMIL BUNIYA

UNIVERSITI TEKNOLOGI MALAYSIA

REVERSE LOGISTIC FOR INDUSTRIAL BUILDING SYSTEM CONSTRUCTION PROJECT

MOHANAD KAMIL BUNIYA

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Science (Construction Management)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > AUGUST 2014

ACKNOWLEDGEMENT

All praise is to Allah the Creator of this universe and peace is upon the holy Prophet Muhammad S.A.W. My first and sincere appreciation goes to my family, especially my father, mother, wife, sisters and brothers for always believing in me, for their continuous love, and their supports in all my life. Also I wish to express my sincere appreciation to my thesis supervisor, Associate Professor Dr. Abdul Kadir Bin Marsono for encouragement, guidance, critics, and friendship. Without his continued support and interest, this thesis would not have been the same as presented here. In the end, I want to express my heartfelt gratitude to my friends for their utmost support and motivation throughout this research work. Thanks to all of them.

ABSTRACT

Industrialize Building System (IBS) is a manufacturing best practice that capable to interfere to market the construction. With the right product encouragement from Malaysian government, through its policies and regulations the IBS methods can flourish. However the construction industry players in Malaysia are still not rapidly embracing IBS due to numbers of barriers. Reverse logistic is the process of planning, implementing and controlling flows of raw materials, in process inventory, and finished goods, from a manufacturing, distribution, or use point to a point of recovery or point of proper disposal. The objectives of this study to identify the problems and challenges in reverse logistics and to find solutions to that problems on IBS projects. The data were collected through questionnaires and interviews. The questionnaire was done online and the respondents such as clients, consultants and the contractors, the data from the questionnaires were analyzed using the average index. The study focused on the cost effectiveness of IBS that can affected by the reverse logistic and there many problems can effect on reverse logistic, the reverse logistic can effect on IBS construction project in the form of cost, time and environment sustainability.

ABSTRAK

Sistem Bangunan Industri (IBS) adalah amalan terbaik pembuatan namun masih mampu untuk campur tangan bagi proses pembinaan biasa. Dengan galakan yang aktif daripada kerajaan Malaysia, melalui dasar-dasar dan peraturan-peraturan IBS boleh yang ditetapkan, kaedah aiberluaskan pengsunaannya. Walaubagaimanapun, penggiat industri pembinaan di Malaysia masih tidak pantas mengamalkan IBS kerana beberapa halangan. Logistik Songsang adalah proses merancang, melaksana dan mengawal aliran bahan mentah, seperti dalam inventori proses dan produk siap, bermula dari pembuatan, pengedaran atau penggunaan titik ke titik pemulihan atau pusat pembuangan. Objektif kajian ini untuk mengenal pasti masalah dan cabaran dalam logistik songsang dan untuk mencari penyelesaian kepada masalah yang bagi projek-projek IBS. Data dikumpulkan melalui soal selidik dan temu bual. Soal selidik tersebut dilakukan dalam talian dan responden-responden yang terlibat seperti pelanggan, perunding dan kontraktor. Data daripada soal selidik dianalisis dengan menggunakan indeks purata. Kajian ini memberi tumpuan kepada keberkesanan kos IBS yang boleh terjejas akibat logistik songsang dan terdapat banyak masalah yang boleh memberi kesan ke atas logistik songsang. Logistik songsang boleh memberi kesan ke atas projek pembinaan IBS melalui kos, masa dan persekitaran lestari.

TABLE OF CONTENTS

CHAPTER			TITLE	PAGE
	DECLARATION		ii	
	DED	ICATIO	N	iii
	ACK	NOWLE	DGEMENT	iv
	ABS	TRACT		V
	ABS	TRAK		vi
	ТАВ	LE OF C	ONTENTS	vii
	LIST	T OF TAI	BLES	ix
	LIST OF FIGURES		xi	
	LIST	T OF APP	PENDIX	xiii
1	INT	RODUCT	ION	1
	1.1	Introdu	ction	1
	1.2	Probler	n Statement	2
	1.3	Objecti	ves of Study	3
	1.4	Scope of	of the Study	4
	1.5	Scope of	of Study	4
2	LITERATURE REVIEW		6	
	2.1	Introdu	ction	6
	2.2	Industri	alize Building System (IBS)	6
		2.2.1	IBS Terminology and Definition	7
		2.2.2	History of IBS	9
	2.3	Typical	Classification of IBS	10

	2.3.1 The Fame System	12
	2.3.2 Panel System	13
	2.3.3 Box system	14
2.4	Classification for Types of IBS Used in	
	Malaysia	15
2.5	Benefits of IBS Components	16
2.6	Reverse Logistic	18
2.7	Importance of Reverse Logistic	18
2.8	Drivers of Reverse Logistic	19
2.9		
2.10	Cradle to Cradle Theory	23
2.11	Supply Chain Overview	23
2.12	Supply Chain Definition	24
2.13	Supply Chain Design	26
2.14	Performance Measurement in Supply Chain	28
RESE	EARCH METHODOLOGY	32
3.1	Introduction	32
3.2	Research Design Approach	32
3.3	Methodology	33
3.4	Literature Review	34
3.5	Research Approach	34
3.6	Targeted Area	36
3.7	Data Analysis	36
3.8	Frequency Analysis	37
3.9	Average Index	37
RESU	ULTS AND ANALYSIS	39
4.1	Introduction	39
4.2	Questionnaire Survey	39
4.3	General Information	40
4.4	Cost Effectiveness of Reverse Logistic	43
4.5	Reverse Logistic Problems and Challenge	47

4	1.6	The Effe	ct of Reverse Logistic	49
4	4.7	Discussio	on	50
				- 4
(CON	CLUSION	NS AND RECOMMENDATIONS	54
5	5.1	Introduct	ion	54
5	5.2	Conclusi	ons	54
5	5.3	Recomm	endations	56
		5.3.1	Top Organization Management	
			Support and Staff to Implement	
			Reverse Logistics	56
		5.3.2	Staff Training for Reverse Logistics	56
		5.3.3	Coordination of Functional Team	
		5.3.4	Strategies and Planning for Reverse	
			Logistics	57
		5.3.5	Establishing Policies, Guidelines and	
			Programmes for Reverse Logistics	58
		5.3.6	Information Management and Data	
			Collection	58
		5.3.7	Appropriate Information Systems for	
			Reverse Logistics	58
NCE	c			60
NCL	3			00

5

REFERENCES	60
Appendix A	63
Appendix B	67

LIST OF TABLE

TABLE NO	TITLE	PAGE
2.1	Categorization of terminologies	8
2.2	Building system classification according to structural system	12
2.3	Performance Measures in Supply Chain Modelling	31
4.1	Detailed of administered Questionnaire	40
4.2	Respondents profession	40
4.3	Value of execute projects in the last five years	41
4.4	Number of projects executed in the last five years	41
4.5	Job title of the respondent	42
4.6	Cost effectiveness from factory to site	43
4.7	Cost associated with reverse logistics	45
4.8	Problems relating to product returns and reverse logistics processes	47

4.9	Organizational and management-related problems	
4.10	The effect of reverse logistic	50

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
2.1	Classifications of Industrialized Building Systems (IBS)	11
2.2	Industrial Hall using Steel Frame System	13
2.3	Arrangement of box units into position onsite	15
2.3	Types of channel relationships	26
2.4	Taxonomy of supply chain models	28
4.1	Respondents profession	40
4.2	Value of projects executed	41
4.3	Number of projects executed	42
4.4	Job title	42
4.5	Cost effectiveness from factory to site	44
4.6	Cost effectiveness from site to factory	44

4.7	Cost associated with reverse logistics	46
4.8	Problems relating to product returns and reverse logistics processes	47
4.9	Organizational and management-related problems	49
4.10	The effect of reverse logistic	50

LIST OF APPENDIX

APPENDIX	TITLE	PAGE
А	Questionaire Survey	63
В	Technical paper	67

CHAPTER 1

INTRODUCTION

1.1 Introduction

Increasing attention has been given to reverse logistics (RL) and closed loop supply chain (CLSC) markets and business models over the last decade. This is due in part to the recognition of increasing value of the products and technology created in the field at the end of general direct supply chains and the impact of green laws, particularly in Europe. The problem and concerns of the ultimate disposal of junk, trash, and waste has always been an issue as a function of urbanization, and the increasing population density of metropolitan areas. With the industrial revolution, the problems were intensified as a result of the appearance of hazardous waste and materials, environmental impact, and the growing need for control and disposition of human and animal wastes to protect the health and safety of the population. These responsibilities were initially the focus of local and regional governments, and later supplemented by independent businesses providing trash removal and recycling services under contract to government organizations, or for a profit, based on the recoverable value of the trash and waste. However, the last 20 to 30 years have resulted in the creation of an entirely new array of products and goods at the end of the traditional direct supply chain. This has included Products that have failed, but can be repaired or reused. Products that are obsolete, or at the end of leasing life, but

still have value, Unwanted and unsold products on retailer's shelves, Products that have been recalled and Parts and subassemblies created from "pull-and-replace" repair in the field.

Which still have value these products, parts, subassemblies, and materials represent rapidly growing values and economic opportunities at the end of the direct supply chain. They are now the focus of business, industrial, government, commercial, and consumer organizations, looking at the RL process and/or CLSC as a basis for generating real economic value, as well as support of environmental concerns and to reduce the cost of the products. This focus is increasing in all markets including industrial and high tech, commercial, and consumer product areas.

1.2 Problem Statement

The RLRFE (reverse logistic recycling flow equilibrium) problem as a flow equilibrium problem from a system wide policy-making perspective, focusing particularly on equilibrium in situations in which market price and recycling channel flows are coupled interactions and input-output recycled material flows at each agent are not balanced. They propose a three-loop nested diagonalization method in which asymmetric link interactions are gradually relaxed to achieve the equilibrium solution (Kara et al., 2007)

Manufacturers have experienced institutional pressures in the form of market and regulatory demands to conform to the standards dictated by environmental regulations, Manufacturers have experienced institutional pressures in the form of market and regulatory demands to conform to the standards dictated by environmental regulations (Sameer Kumar et al., 2008). There are pressures on organisations to act responsibly in terms of the protection of the environment and create value for all stakeholders (Nylund, 2012).

There are major barriers and obstacles, which make it difficult to manage reverse logistics efficiently and proactively (Ravi & Shankar, 2005; Zheng, et al., 2005).

One-way strategy for manufacturing systems generating waste that can only be down cycled or discarded into a landfill. In this vision, reducing environmental impacts by eco-efficient ways "creates the illusion of short-term relative improvements" (Young Tilley, 2006).

1.3 Objectives of Study

The objectives to be achieved are as follows:

- To identify the problems and challenges in reverse logistics in IBS construction project
- (ii) To find solutions to the problems and challenges in reverse logistics in IBS construction project
- (iii) The effect of reverse logistic on IBS construction project.

1.4 Scope of the Study

In recent years, the application of supply chain management (SCM) philosophy to the construction industry has been widely investigated as an effective and efficient management measure and strategy to improving the performance of construction. The construction has long suffered from high fragmentation, large waste, poor productivity, cost and time overruns conflicts and disputes.

From a SCM system perspectives can be considered as the coordination of organizations or participants on material flow, information flow and human flow.

- Proposed simulation model in this study can be applied in the planning of IBS projects especially the logistic process of organization work flow and the execution at the IBS construction projects.
- Propose scheme production of catalog system for IBS such as (specification and standardization).
- Propose alternative models of managing organization and to monitor and control the process.
- Optimum work flow process in achieving a good overall IBS project period can be calculated from the proposed model.

1.5 Scope of Study

This study will focus on reverse logistics and not on the conventional forward supply chain practices or processes. The reason for this is that best practices, problems and solutions in reverse logistics may not apply to conventional forward logistics practices. In the previous section it became evident that reverse logistics is the opposite of logistics. In this study try to find the problems and challenges of reverse logistic and how to overcome this problems then the effect of reverse logistic on IBS construction projects.

REFERENCES

Bajet Tahun 2013. Dewan Rakyat. 28 September (2012)

- Beamon. B.M. (1999). Measuring Supply Chain Performance. *International Journal* of Operations and Production Management 19 (3): 275-292.
- Benita M. Beamon. (1998). Supply Chain Design and Analysis: Models and Methods. International Journal of Production Economics 55(3): 281-294.

Blismas and Wakefield, 2009

- CIDB (2003) Industrialized Building System (IBS) Roadmap 2003-2010. Construction Industry Development Board (CIDB), Kuala Lumpur, 2003.
- Erik Sundin, Nicholas Jacobsson and Mats Björkman (2000) Analysis of Service
 Selling and Design for Remanufacturing, 2000, Proceedings of the 2000 *IEEE International Symposium on Electronics and the Environment*, 2000.
 ISBN: 0-7803-5962-3
- Fearne, A. and Fowler, N. (2006). Efficiency versus Effectiveness in Construction Supply Chains: The Dangers of 'Lean' Thinking in Isolation. Supply Chain Management: An International Journal. 11(4): 283
- Federica Cucchiella, Massimo Gastaldi. (2006). Risk Management in Supply Chain: A Real Option Approach. Journal of Manufacturing Technology Management. 17(6): 700–720
- Gruneberg and Hughes (2006). Understanding Construction Consortia: Theory, Practice and Opinions (Volume 6). UK: RICS.
- Hokey Min, Gengui Zhou. (2002). Supply Chain Modelling: Past, Present and Future.Computer & Industrial Engineering 43: 231-249.
- https://publications.theseus.fi/bitstream/handle/10024/46993/Reverse%20Logistics% 20and%20green%20logistics.pdf?sequence=1 [Downloaded: 20/1/2014].
- Junid, S.M.S. (1986). Industrialised Building System Proceedings of a

UNESCO/FEISEAP Regional Workshop. Malaysia: UPM Serdang

- Kamarul Anuar Mohamad Kamar and Zuhairi Abd. Hamid. (2011). Supply Chain Strategy for Contractor in Adopting Industrialised Building System (IBS). Journal of Basic and Applied Sciences. 5(12): 2552-2557
- Kamarul Anuar Mohamad Kamar, Zuhairi Abd Hamid, Mohd. Khairolden Ghani,
 Ahmad Hazim Abdul Rahim, Maria Zura Mohd. Zain, Franky. (2012).
 Business Strategy of Large Contractors in Adopting Industrialised Building
 System (IBS): The Malaysian Case. Journal of Engineering Science and
 Technology. 7(6): 774-784
- Kleindorfer, P.R. and Saad, G.H. (2005), Managing Disruption Risks In Supply Chains. Production and Operations Management. 14(1): 53-68
- Majzub (1977). Modular Housing Systems Used Around the World. International Journal of Housing Science, Vol. 1. Malaysia.
- National Housing Policy (NHP). National Housing Department. Ministry of Housing and Local Government.
- Nylund, S. (2012). Reverse Logistics And Green Logistics: A comparison between Wärtsilä and IKEA. PhD. Vaasan Ammattikorkeakoulu University of Applied Science, *International Business*. [Online] Available from: Page | 264
- Pearce, D. (2003) The Social and Economic Value of Construction 2003: The Construction Industry's Contribution to Sustainable Development. *Construction Industry Research and Innovation Strategy Panel.*

Productivity Report 2011/2012. Malaysia Productivity Corporation. May 2012.

- Ravi, V. & Shankar, R. (2005). Analysis of Interactions among the Barriers of Reverse Logistics. *Technological Forecasting & Social Changes*, 72:1011-1029
- Residential, Shops & Industrial Properties Market Status Report Q4 2012. Pusat Maklumat Harta Tanah Negara, Jabatan Penilaian & Perkhidmatan Harta, Kementerian Kewangan Malaysia.
- S. Kara, F. Rugrungruang, H. Kaebernick, 106 (2007) 61_69, Simulation Modeling of Reverse Logistics Networks, *Int. J. Prod. Econ.*
- Sameer Kumar et al. 2008, Cradle to cradle: Reverse logistics strategies and opportunities across

- Tenth Malaysia Plan 2011-2015. (2010). The Economic Planning Unit Prime Minister's Department. Putrajaya.
- Viswanadham, N. (1999). Analysis and Design of Manufacturing Enterprises. Kluwer Academic Publishers.
- Vrijhoef, R. and Voordijk, H. (2003). Improving Supply Chain Management In Construction: What Can Be Learned From The Food And Grocery Sector? CIB Joint International Symposium on Knowledge Construction. 22 – 24 October 2003, Singapore.
- Warburton, R. and Stratton, R. (2002). Questioning the Relentless Shift to Offshore Manufacturing. Supply Chain Management: An International Journal.7(2): 101-8.
- Zheng, Y., Zheng, W. & Liu, P. (2005). Research on Information Integration Management of Reverse Logistics. ICEC '05 Proceedings of the 7th International Conference on Electronic Commerce, 133:851-855 ACM: NY