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ABSTRACT

Interest in the use of fuel cell as highly efficient, clean energy conversion 

device has been rapidly increasing over the past twenty years. Currently, proton 

exchange membrane fuel cells (PEMFC) are regarded as the paramount type of fuel 

cell due to their wide range of applicability. Perfluorosulfonic acid (PFSA) ionomer 

Nafion® by DuPont remains the typical membrane in PEMFC under development 

today, despite well recognized drawbacks which include limitations in thermal 

stability. Recent studies have found that although the polymer-zeolite composite 

membranes have lower value of proton conductivity than Nafion®, polymer-zeolite 

composites show a more stable performance at high temperature. In this study, the 

proton transfer mechanism of zeolite functionalized sulfonic acid with water 

molecules is investigated using density functional theory (DFT) calculation at 

PM3/ONIOM(B3LYP/6-311G(d,p):PM3) level of theory. The systems were 

constructively built up by modifying the crystal structure of Linde Type A (LTA) 

zeolite functionalized sulfonic acid side chains, by varying the degree of separation 

of sulfonic acid side chains (2T, 3T and 4T) as well as the alkyl chain length (n=3, 5, 

7) in order to study the effect of proton transfer at different distance and different 

chain length. Extensive searches for minimum energy conformations from 1 to 6  

explicit water molecules revealed that 2T distance gives the best results for propyl 

sulfonic acid side chain, meanwhile 4T distance gives the best result for pentyl and 

heptyl sulfonic acid side chains, indicated by the minimum water molecules required 

to initiate second proton dissociation. The results have shown several agreements 

with previous calculation regarding polymeric fragments where partial

dissociation of the protons in the fragments occurs at water contents of less than 

3 H 2Os/SO3H. Furthermore, we found that water distributions that facilitate a higher 

degree of dissociation and separation of the protons are important factors in 

stabilizing the fragments.
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ABSTRAK

Kepentingan dalam penggunaan sel bahan api sebagai peranti penukaran 

tenaga yang sangat cekap dan bersih telah semakin meningkat dalam tempoh dua 

puluh tahun yang lalu. Pada masa ini, membran pertukaran proton sel bahan api 

(PEMFC) dianggap sebagai jenis yang paling utama kerana penggunaannya yang 

meluas. Ionomer asid perfluorosulfonik (PFSA) Nafion® oleh DuPont digunakan 

sebagai membran biasa dalam PEMFC hingga ke hari ini dan masih dalam 

penambahbaikan, walaupun terdapat kelemahan, termasuklah kurang kestabilan 

terma. Kajian terbaru mendapati bahawa walaupun membran komposit polimer- 

zeolit mempunyai nilai kekonduksian proton yang lebih rendah daripada Nafion®, 

komposit polimer-zeolit menunjukkan prestasi yang lebih stabil pada suhu tinggi. 

Dalam kajian ini, mekanisma pemindahan proton zeolit asid sulfonik dengan molekul 

air disiasat menggunakan pengiraan teori ketumpatan berfungsi (DFT) pada tahap 

PM3/ONIOM(B3LYP/6-311G(d,p):PM3). Sistem telah disimulasikan dengan 

memodifikasi struktur kristal zeolit Linde Type A (LTA) dengan kumpulan berfungsi 

asid sulfonik, dengan mengubah jarak antara rantaian sisi asid sulfonik (2T, 3T dan 

4T) dan panjang rantai alkil (n=3, 5, 7) untuk mengkaji kesan pemindahan proton 

pada jarak dan panjang rantaian yang berbeza. Kajian struktur tenaga minimum pada 

1-6 molekul air, jelas menunjukkan bahawa jarak 2T memberikan hasil yang terbaik 

untuk rantaian propil asid sulfonik manakala jarak 4T memberikan hasil yang terbaik 

untuk rantaian pentil dan heptil asid sulfonik, di mana minimum molekul air 

diperlukan untuk memulakan penceraian proton kedua. Hasil kajian mendapati 

beberapa persamaan dengan pengiraan pada kajian sebelum ini terhadap

struktur polimer di mana penceraian separa proton dalam sistem berlaku pada 

kandungan air kurang daripada 3 H 2Os/SO3H. Tambahan pula, kami mendapati 

bahawa pengagihan air yang memudahkan tahap penceraian dan pemisahan proton 

yang lebih tinggi adalah faktor penting dalam menstabilkan sistem.
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CH APTER 1

INTRODUCTION

1.1 Background of Study

Apparently, environmental and energy saving issue have become one of 

crucial issue for human worldwide. In order to solve these problems, many efforts 

have being done to replace fossil fuels with other energy sources such as its 

connotation clean fuel. Fuel cells are on the edge of creating an enormous 

revolutionary change in the field of electricity due to their special properties. By 

definition, fuel cell is an electrochemical apparatus that convert the chemical energy 

of fuel without fuel combustion to electrical energy. Hence, in a fuel cell system, the 

chemical energy related to electrochemical reaction of the fuel with oxidant directly 

change into the water, electricity and heat.

Proton exchange membrane fuel cells (PEMFCs) have been discovered as 

capable power source for applications in transportation, stationary and portable 

device requiring clean, quiet and portable power [1]. The other major advantages 

include current prototype efficiency of up to 64%, high energy densities compared to 

batteries and the ability to operate on clean fuels while emitting no pollutants [2 ]. 

Despite these superiorities, diffusion of PEMFC technology into the market place is 

being limited by the cost and reliability issues [3]. According to Kreuer, research into 

fuel cells has grown exponentially over the last 15 years [4]. The key components in 

the fuel cell system are the proton exchange membranes (PEMs) itself [5]. In the case 

of polymer fuel cell, the major breakthrough in technology that have allowed 

significant improvement in the overall performance of PEMFC has been the 

modifications of Nafion® by Dupont.
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In 1970s, a chemically stable cation-exchange membrane based on sulfonated 

poly-tetrafluoro-ethylene was first developed by Dupont as Nafion® leading to a 

large scale use of this membrane in the chor-alkali production industry and energy 

storage or conversion system (fuel cell). This Nafion® membrane was selected as a 

standard membrane for polymeric electrolyte fuel cell [6 ]. However, it has a number 

of drawbacks that need to be overcome, which is the high cost, due to its complicated 

system construction, the durability, and the poor performance at temperature above 

80°C due to the loss of water. Besides, the CO poisoning at the anode and 

environmental hazards related with its dispose have caused the development of new 

membrane which include organic and inorganic hybrid membrane by using silica as 

support material [7]. This critical situation leads to the appropriate preservation and 

sustainable development strategies attempt to the production of green materials 

which are safer to users and more environmental friendly.

Performance, durability and cost are the three major properties known as 

"iron triangle" that need to be taken care of in order to have excellent proton 

exchange membrane. Hence, researches have to focus to obtain the proton exchange 

membrane with high conductivity, low electroosmotic drag coefficient, good 

chemical and thermal stability, good mechanical properties and low cost [5]. 

Although hydrophobic silica particles are not proton conductors, inclusion of the 

hygroscopic silica particles in composite solid electrolytes is primary single 

functional that is for water retention. Clearly, bifunctional particles, being both 

hydrophilic and proton conducting are preferred to be used as proton conducting 

material. Thus, zeolite could be one of the suitable materials with the preferred 

properties due to its crystalline aluminasilicate with a uniform pore size [8 ]. Hamdan 

[9] also states that nano zeolites are potential candidates to be used as proton 

conducting membrane instead of silica due to their significant moderate proton 

conductivity, excellent water retention at high temperature and molecular sieving 

capabilities. In addition, although the polymer-zeolite composite membranes have 

the lower values of proton conductivity than Nafion, polymer-zeolite composites 

show a more stable performance at high temperature [5]. In fact, nearly every 

application of zeolites has been driven by environmental concerns, or plays a 

significant role in reducing toxic waste and energy consumption [1 0 ].
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1.2 Problem  Statem ent

This decade, it is evidenced how our planet is being threatened by local and 

global environment problems as well as the consumption and supply of energy. 

PEMFC are one of the most promising clean energy technologies under 

development. The fuel cell membrane can be synthesized using different materials 

such as Nafion® or zeolite functionalized sulfonic acid used for PEMFC purposes. 

However, there is no fundamental computational study focusing on the proton 

transfer mechanism which occurs in zeolite PEM system which have been reported 

to be a better and cost effective performance material compared to Nafion® [8 ]. 

Therefore, simulation using density functional theory (DFT) calculation would help 

us to understand the role of each functionalized group and would eventually create a 

new possibility to use other type of compounds which can lead to the improvement 

of PEMFC material.

1.3 Objectives of Study

The aim of this research is to identify optimum condition of zeolite 

functionalized sulfonic acid for minimally hydrated PEMs. Thus, to achieve this aim, 

the related objectives are identified as follows:

1) To observe the mechanism of proton transfer in restricted sulfonic acid for 

PEMFC.

2) To study the effect of chain length to the proton transfer in restricted sulfonic 

acid for PEMFC.

3) To study the effect of sulfonic acid side chain distance to the proton transfer 

in sulfonic acid for PEMFC.
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1.4 Scope/Limitation of Study

This study only focused on the proton transfer mechanism in restricted 

sulfonic acid with alkyl chain up to 7 carbons (heptyl) for PEMFC. In addition, the 

selection of the basis set for the DFT calculation will reflect not only the accuracy, 

but also the time consumed for computing the job. It is evidenced that DFT method 

give a faster calculation compared to m;Wo, but the accuracy of results still 

depends on the type of basis set used. Therefore, a few points stated above were 

taken into account in order to complete this project within time.
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