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ABSTRACT 

 

 

 

 

Thermoluminescene (TL) dosimeters are widely used in radiation therapy to 

verify the radiation dose received by cancer patients. This research was carried out to 

study the TL properties of Dysprosium (Dy) doped borate glass as a TL dosimeter 

subjected to photon and electron irradiations. The glass samples with various Dy 

concentrations were prepared by melt-quenching technique. X-Ray diffraction 

analysis indicates that the glasses are amorphous. The performance of the glass 

samples were compared to the TLD-100 in terms of  TL response, linearity, 

sensitivity, dose response, fading and reproducibility. The addition of Dy2O3 in 

borate glass enhanced TL sensitivity and improved the TL intensity of the glass. It 

was found that calcium borate with Dy concentration of 0.30 mol% was the optimum 

concentration to produce the highest TL response. The TL intensity increased with 

Dy concentration up to 0.40 mol% before it begin to gradually decrease. This 

phenomenon is due to the concentration quenching. The TL properties were studied 

over the useful radiotherapeutic dose in the range of 0.5 Gy to 4 Gy when subjected 

to 6 and 10 MV photon and 6 and 12 MeV electron irradiation.  The sensitivity of Dy 

doped calcium borate was 5.8 times more sensitive than that of undoped sample and 

6.8 times less sensitive compared to TLD-100. A correlation coefficient of 0.98 was 

obtained for reproducibility and the minimum fading for this glass was 10% for 60 days 

observation. By using XCOM software, the Zeff of the glass was found to be 12.14 and 

13.60 for undoped and Dy doped glass, respectively.  
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ABSTRAK 

 

 

 

  

Dosimeter luminesens terma (TL) digunakan secara meluas dalam terapi 

sinaran untuk mengenal pasti jumlah dos sinaran yang diterima oleh pesakit kanser. 

Kajian ini dijalankan untuk  mengkaji sifat TL kaca borat yang didopkan dengan 

Dysprosium (Dy) sebagai dosimeter TL terhadap penyinaran foton dan elektron. 

Sampel kaca dengan pelbagai kepekatan Dy disediakan dengan teknik pelindapan 

lebur. Analisis pembelauan sinar-X menunjukkan kaca tersebut adalah amorfus. 

Prestasi sampel kaca telah di bandingkan dengan TLD-100 dari segi sambutan 

luminesens, kelinearan, kepekaan, sambutan dos, kepudaran dan kebolehulangan. 

Penambahan Dy2O3 ke dalam kaca borat meningkatkan kepekaan dan keamatan 

luminesens terma kaca tersebut. Kajian mendapati kalsium borat dengan kepekatan 

Dy sebanyak 0.30 mol% adalah kepekatan optimum yang menghasilkan sambutan 

luminesens terma tertinggi. Keamatan luminesens terma meningkat dengan 

kepekatan Dy sehingga 0.40 mol% sebelum ia mula berkurang secara beransur-

ansur. Fenomena ini disebabkan oleh berlakunya lindapan kepekatan. Ciri 

luminesens terma telah dikaji pada julat berguna dos radioterapi 0.5 Gy hingga 4 Gy 

terhadap penyinaran foton 6 MV and 10 MV dan penyinaran elektron 6 MeV dan 12 

MeV.  Kaca borat yang didopkan dengan Dy mempunyai kepekaan 5.8 kali ganda 

berbanding dengan kaca yang tidak didopkan dan 6.8 kali ganda kurang kepekaan 

berbanding TLD-100. Pekali korelasi sebesar 0.98 dihasilkan untuk kebolehulangan 

dan kepudaran minimum bagi sampel ini ialah 10% untuk tempoh 60 hari. Dengan 

menggunakan perisian XCOM, Zeff bagi sampel kaca ialah 12.14 bagi kaca tidak 

didopkan Dy dan 13.60 bagi kaca yang didopkan Dy.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Research Background 

 

 

Marie Curie died because of over expose to her discovery which is radium. 

Thomas Edison discovers about the fluoroscope but he stopped his work in this area 

after his assistant died due to an X-ray overdose. Two cases above had proved that 

radiation can give bed effect if wrongly handled it. After many years later, there are 

some improvements in understanding of the dangers of radiation, and yet human 

often fail to handle it safely. It is easy to become pleased about the dangers of 

radiation as it is invisible and odourless. As a result, radiation practitioner may 

expose patients as well as workers to higher levels of radiation than necessary. The 

hazard of excess radiation exposure is not insignificant and leading to a variety of 

health issues. 

 

Recently, research groups have reported a number of radiation effects on the 

applications of glass as such the development of the optically stimulated 

luminescence methodology for use with doped glass material with its possible use as 

dosimeter material, measurement in-vivo of the absorbed dose in patients exposed to 

radiation therapy and diagnosis (Aznar et al., 2002), and the use of borate glass as 

TLD material (Espinosa et al., 2006). 

 

Many authors have studied polycrystalline glass of alkaline and earth borate 

compounds. Recently, there are many studies on thermoluminescence dosimetry 

focusing on improving the TLD characteristic performance. Furthermore, the 
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increasing use of ultraviolet, X-ray and gamma radiations in industrial and medical 

applications has motivated researchers on the search for new host materials with high 

potential of TL properties (J. Li et al, 2005). Why choose borate instead of other 

glass material? It is because borate glass compounds have been widely studied due to 

their features as glass formers and also reported of being very advantageous 

materials for radiation dosimetry application (Satiago et al 2001)  

 

There are numbers of advantages of doped borate glass as radiation 

dosimeter.  For instance, unlike conventional TLDs, the borate glass has very low 

hygroscopic nature. This is an important point for TL dosimeters because the water 

can cause an adverse effect on the TL efficiency of the material associated with non-

radioactive relaxations during thermal stimulation. (McKeever, 1985). 

 

Commercially available TLD materials such as lithium fluoride, calcium 

fluorite, calcium sulphate, lithium borate and quartz are used as dosimeters in 

medical, personnel, archaeological and environmental applications. However, they 

have many disadvantages such as long annealing time and not reproducible (Li Juan 

et al, 2008). In recent study, TLD materials have been extended to nano material and 

optical fibre. Fibre Optics for example is impervious to water and for some instance 

it becomes possible to locate the fibre dosimeter within a particular tissue.  

 

The wide variety of TLD materials and their different physical forms allow 

the determination of different radiation qualities at dose levels from µGy to kGy. 

Most applications and major part of the literature are based on lithium fluoride doped 

with magnesium and titanium (LiF:Mg, Ti). However other materials such as CaSO4: 

Dy is widely used and recently TL material LiF:Mg, Cu, P also show great potential 

as radiation dosimeter. In most materials, the linear interval is limited by super 

linearity and decay of the TL intensity at large doses.  

 

 

The useful range was determined by linear dose dependence. High sensitivity 

such as high TL signal per unit absorbed dose is also one of the requirements for 

TLD material. High sensitivity is an important requirement if the TLD materials are 

used as personal and environmental radiation monitoring. Low dependence of TLD 
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response on the energy of the incident radiation and long fading, i.e the ability to 

store dosimetric information for a long time are also required as TLD materials. The 

luminescence spectrum should match the maximum spectral sensitivity of the 

photomultiplier and the TL disimetric material should be mechanically strong, 

chemically inert and radiation resistant. Generally, these requirements should be 

fulfilled in order to produce high quality TL dosimeter.  

 

Rare earth elements are interesting dopants donating material in host glass. In 

many cases, such as in optical absorption or light emission, there exists a direct 

relation to the energies in the ground and excited states of the electron system. In 

recent years, studies on rare earth doped glasses have gained much interest of 

researchers for the reason that the particular 4f electronic configuration of rare earth 

in varied glass matrixes leads to emissions from ultraviolet to infrared with many 

potential uses including in thermoluminescence dosimeter (Ferhi et al., 2009). 

 

The present studies intend to investigate new material based on borate (B2O3) 

glasses and mixed with other material such as calcium. The presence of dopants in 

calcium borate glass can greatly enhance the TL sensitivity to ionizing radiations by 

providing an increase number of traps. Furthermore, addition of dopant can enhance 

the chemical durability and stability of the glass host.  

 

 

 

 

1.2 Problem Statement 

 

 

Although the fast development of active real-time electronic dosimeters, 

passive dosimeters which integrate absorbed dose over a period of time are still in 

demand and are frequently obligatory in radiation protection. Thermoluminescence 

dosimeters are now gaining popularity in individual dosimetric services, replacing 

dosimetric films, which were commonly used in the past century (Olko et al, 2006). 

The property of thermoluminescence materials to ionizing radiation depends on the 

relationship between the absorbed dose and the intensity of light emitted. In personal 

dosimetry, thermoluminescence detectors are commonly used due to their major 

advantages such as high sensitivity, low doses as low as 1 μGy to be measured, and 

http://www.sciencedirect.com/science/article/pii/S135044871000017X#bib26
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linear dose response up to at least 1 Gy, good energy response, reproducibility, and 

resistance to high humidity and magnetic fields. 

 

Despite all advantages stated above, there are also some disadvantages of any 

thermoluminescence detectors such as signal erased during readout, easy to lose 

reading, no instant readout, readout and calibration time consuming and not 

recommended for beam calibration. TLD phosphors that most frequently used in 

medical applications are LiF:Mg,Ti and LiF:Mg,Cu,P due to their tissue equivalence 

characteristics.  However, these well-established materials have several notable 

drawbacks, including being hygroscopic and not able to store permanently dose 

information since the reading of the detectors erases the dosimetric information. 

TLDs only provide integrated dose information sometime after the patient has been 

irradiated.  Therefore, the radiotherapist cannot adjust the exposure in real-time to 

ensure that the proper dose is delivered to the desired region.  Additional limitations 

of TLDs include their poor dose reproducibility, limited dynamic range and in certain 

cases nonlinear responses (Soltani et al., 1992). 

 

Even though many new long lasting thermoluminescence materials are 

developed, the thermoluminescence phenomenon by calcium borate remains to be 

explored. Thus, in this study, TL properties of Dy-doped calcium borate will be 

carried out.   

 

 

 

 

1.3 Research Objectives 

 

 

1.3.1 To prepare and determine the optical properties of undoped and Dy-doped 

calcium borate glass system. 

 

1.3.2 To investigate the thermoluminescence properties of undoped and Dy-

doped calcium borate glass subjected to photon and electron irradiations. 

 

 

 

http://adsabs.harvard.edu/cgi-bin/author_form?author=Soltani,+P&fullauthor=Soltani,%20Peter%20K.&charset=UTF-8&db_key=PHY
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1.4 Scope of study  

 

 

 In this study, an important characteristic of dosimeters such as fading, TL 

glow curve, linearity, reproducibility and sensitivity characteristic of undoped and 

Dy-doped calcium borate glass subjected to photon and electron irradiation will be 

explored.  This material might have potential as TLD material and can be used for 

variety application such as environmental or personal dosimetry. 

 

 The irradiation on the glass sample has been conducted at dose ranging from 

0.5 – 4.00 Gy subjected to photon and electron irradiation. The ionizing sources were 

delivered by using Primus MLC 3339 linear accelerator machine (LINAC).  The 

energy used in this study was 6 and 10 MV photon beams and 6 and 12 MeV 

electron beams.  

 

 

 The study of fading on calcium borate glass has been performed by using 10 

MV photon beams for 1, 2, 3 and 4 Gy. Readings of TL response were obtained until 

60 days after 24 hours irradiation. For reproducibility characteristic, the glass 

samples were exposed to 6 MV photon with 4 Gy absorbed dose.  

 

 In this study, the effective atomic number, Zeff for glass sample has to be 

determined by using XCOM method. Besides that, XRD analysis was carried out to 

give confirmation on amorphous nature of sample. Since this glass sample was a new 

material prepared, an investigation of sample composition is very important. 

Therefore, Energy Dispersive X-ray Spectroscopy (EDXS) was used in this study.    

 

The current chapter provide introduction to the problems associated with TL 

and a review of the existing literature regarding the subject.  Chapter 2 explained 

previous study and theories regarding the TL models, radiation interactions, principle 

of TLD and their important characteristics as a radiation dosimeter and brief 
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introduction to the technique related in this study.  Chapter 3 describes the 

methodology and equipment used.  In Chapter 4, a range of thermoluminescence 

studies and the results obtained are presented and discussed in detail.  Chapter 5 

summarizes the findings of this investigation, and provides an outlook for future 

study in this area.   

1.5 Significant of the research 

 

 

This work intends to study TLD material with chemically and physically 

stable and also has high TL response and good sensitivity. Calcium borate glass can 

easily be prepared at low melting temperature and low cost compared to other TL 

materials such as lithium fluoride, lithium borate, calcium fluoride and calcium 

sulphate. The doping ion, Dy in borate host glass is expected to enhance the TL 

intensity. Such study will gain knowledge for further research in the development of 

new TL materials for medical and environmental applications.  
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