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ABSTRACT 

 

 

 

 

Digital system designers nowadays facing the challenge of need to come out 

new design or improved design fast such as IP core or interface system that will be 

embedded into System-On-Chip. Rapid prototyping requires platform for development 

design and testing of any digital system. A platform that is flexible to fine tune where 

the source code or the internal design is visible and accessible by designer is preferable 

to increasing the opportunity for design exploration. Technology leading company 

such as Intel, Altera, and Xilinx have these platform ready but with limited access to 

internal design and source code as it is their company IP and trade secret. 

 

Currently most digital system was design and implemented on FPGA before 

goes into production. The design in hardware description language like Verilog HDL 

was compiled into physical netlists using compiler tools such as Synopsys, Altera 

Quartus II and consume by the FPGAs, thereby reducing the design cycle while 

increasing the opportunity for design exploration.  
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ABSTRAK 

 
 
 
 

Rekaan sistem digital hari kini menghadapi cabaran kritikal disebabkan dunia 

reka bentuk dalam era baru ini mengunakan cara IP untuk membentuk sistem baharu 

dengan secepat mungkin dalam bentuk SOC. Prototaip perlu dibentuk secepat 

mungkin untuk membolehkan kajian, eksperimen dan analisis dijalankan untuk sistem 

baru. Sebuah platform yang fleksibel untuk diubahsuai di mana kod wujud dan boleh 

diakses adalah keperluan untuk memudah and mempercepatkan proses mencipta 

sistem digital baru. Syarikat teknologi terkemuka seperti Intel, Altera, dan Xilinx 

mempunyai platform ini bersedia tetapi dengan akses terhad kepada reka bentuk 

dalaman dan kod kerana ia adalah rahsia perniagaan. 

 

Pada masa kini kebanyakan ciptaan sistem digital baru melalui FPGA sebelum 

ke pengeluaran sebenar. Reka bentuk dalam kod bahasa seperti Verilog HDL 

menggunakan program seperti Synopsys, Altera Quartus II dan keluaran alat-alat ini 

diguna oleh FPGAs , ini akan mengurangkan kitaran reka bentuk di samping 

meningkatkan peluang untuk penerokaan reka bentuk baru. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

 Central processing unit (CPU) is a microprocessor that served as the Heart of 

computer. Microprocessors are regarded as one of the most important devices in 

modern worlds as more and more electronics gadgets are depending on it. CPU is the 

hardware unit in a computer that carries out the instruction of a computer program 

such as logical operation or arithmetic operation which in other words providing 

computational ability and control. CPU nowadays also referred as core since this 

important unit of a computer is now embedded with others important Intellectual 

Property (IP) unit in a single chip in a form called System-On-Chip (SOC). 

   

 Typical CPU are served for general purpose computation which support a wide 

range of general arithmetic and logic operation unlike others dedicated processor 

which design and optimized for certain function or algorithm. CPU are usually 

incorporate arithmetic and logic functional units as well as the associated control logic, 

instruction processing circuitry, and a portion of the memory hierarchy known as 

Cache that is to enhanced the speed of memory Read and Write operation from and to 

memory device such as RAM. Portions of the interface logic for the input/output (I/O) 

and memory subsystems may also be infused.  

  

 Instruction set Architecture (ISA) defines how software programmers 

communicates with the hardware in CPU from the perspective of a software 

programmers, mean how hardware response to certain code in software. . In this 
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project, we will focus on the x86 ISA compatible design. x86 ISA is a Complex 

Instruction Sets Computer (CISC), extra effort required in instruction decode compare 

to RISC as their instruction is more complex in term of variable length and format, 

while RISC is always fixed length instruction in general. RISC ISA support only 

simple addressing modes, memory access only through two instruction, load and store, 

but x86's support multiple complex addressing modes, many instructions have memory 

access flow. 

 

In this project, the exploration is focus on instruction fetch and pre-decode unit 

of the x86 ISA design. Zet processor which is an open implementation of the x86 ISA 

also known as IA-32 (Intel Architecture-32) available in opencore.org is use as a 

reference in exploring the design of instruction fetch and pre-decode unit of an IA-32 

core. Zet is synthesizable and has been FPGA proven, currently four different FPGA 

boards are supported which are Xilinx ML-403, Altera DE0, Altera DE1 and Altera 

DE2-115 boards. 

 

 

 

 

1.2 Problem Statement  

 

 

Digital system designers nowadays facing the challenge of need to come out 

new design or improved design fast such as IP core or interface system that targeted 

for embedded into System-On-Chip. Rapid prototyping requires platform for 

development design and testing of any digital system. The platform in this context 

refer to a processor core that able to attached with any of our newly designed co-

processor or an interface system or others IP to test its functionality and performance 

in an environment such as Field-Programmable Gate Array (FPGA). A platform that is 

flexible to fine tune and open to access where the source code or the internal design 

that is visible and accessible by designer is preferable where it easier for debug and 

increase the opportunity for design exploration. Intel processor that implement x86 

ISA also known as Intel Architecture (IA) which is widely use in the world seems to 

lack of x86 ISA compatible platform that is open or free for research and development 

work currently. 
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Platform provider from leading company available now such as Intel (Quark), 

Xilinx (Micro-Blaze) and Altera (Nios) are not open source. Their internal designs are 

IP and Trade Secret that is not for sale or available for public affordable price. Hence, 

preventing researchers to access into the core design to make detail monitoring or 

debugging and modification while using this platform to do research work. Open 

source platform available in internet are usually lack of proper documentation and 

might be incomplete. While a good documentation is very important to provide good 

confidence level to the designer when using the platform and also the documentation 

affect the reusability of the design and also the support of extending the design. Extra 

effort will be requires from the designer that using the platform for debugging the 

design when encounter any issue. Zet processor is x86 ISA compatible processor 

where its design source codes are freely available in OpenCore.org. Although it has 

proven its functionality through FPGA emulation but the design methodology and 

specification are not proper documented giving us hard time to understand the design 

purely through analyzing the design source code.   

 

 The Zet processor design does not pipeline, which is probably due to the issue 

with CISC type ISA of variable length for instruction that requires effort to pre-decode 

the instruction length during instruction fetch stages before actual decoding the 

opcodes and functions of the instructions. Zet implement the instruction length decoder 

with a traditional instruction length decoder, a state machine that analyze byte per byte 

of the instruction bytes chunk fetch. This method causes the cycles requires for pre-

decode is inconsistent with the variable of length of instructions and make it hard to 

be pipeline. 

 

 

 

 

1.3 Objectives 

 

 

Our main objective is to design an X86 ISA processor. The processor design 

was separate to two parts, program control instruction class and arithmetic instruction 

class. In this project, the program control instruction class was handled. The objective 

in this project is:  

1. To analyze the Zet processor design of it instruction fetch control and 
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program control instruction class unit. 

2. To modify the instruction fetch stages such a way that enable pipeline design. 

3. To develop verification environment such as test benches and bus functional 

model (BFM) serve to analyze, verify and bench marking the design with 

proper documentation.  

 

 

 

 

1.4 Scope 

 

 

This project is one part of a large project where the final goal is to design a x86 

ISA cpu. The core design is separated into two parts. First part, program control 

instruction class which is responsible to handle the program control, PC and all 

program control related instruction such as conditional jump and subroutine call also 

including the instruction fetch and pre-decode of x86 instruction set. Second part, the 

arithmetic instruction class where this portion will be handling all logical and 

arithmetic operation and data memory access of all related instructions such as mov, 

add, store and load. In this project my scope is to design the program control instruction 

class that is x86 ISA compatible. The arithmetic instruction class will be handle by my 

counterpart.  

 

In details, the program control instruction class includes the instruction fetch 

unit and program control instructions such as branch and jump handling unit which 

can be decomposed into three main block of design which is the Instruction Pre-

decoder unit that decodes the instruction length, the Branch Prediction Unit to improve 

conditional branch type instruction handling in pipeline design, and the next 

instruction address (PC) computation unit. 

 

The scope of design specification will support only fix opcode length one byte 

and prefix are not supported. The data size of the processor supported is 16bits. The 

instruction bytes chunk are assume readily in instruction cache when processor issue 

instruction fetch and  no extra waiting time for cache to get data from RAM. The 

program control instruction class will be responsible to provide pre-decoded 

instruction and any control signals requires to the arithmetic instruction class which is 
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handled by another person at the same time. The design will be modeled in Verilog 

HDL and using synthesis tool Altera Quartus II SE then simulate with Modelsim-

Altera. 

 

 

 

 

1.5 Summary of works 

 

 

 This project aim to enable the pipelining base on Zet processor designs which 

then requires modification in instruction fetch and pre-decode unit so that is fulfil the 

requirement for pipeline design. This project does a one cycle instruction length 

decoder which realize using lookup table method to resolve the issue of inconsistent 

variable cycles to pre-decode instruction length that gating pipeline design. To enable 

pipelining, the program control instruction handling will need to modify accordingly 

such as stall the stages when pending flag status and check flag only when flag register 

data is updated for condition jump instruction. To further improve the performance, a 

branch prediction unit is design with simple 2 bit local branch predictor to predict for 

conditional branch instruction outcome. Finally a comparison between Zet processor 

instruction fetch and pre-decode performance with this project design is made and 

reported. With the enable of pipeline, higher throughput can be achieved versus the 

original Zet processor design. 
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