
i

Program Control Instruction Class of x86 Instruction Set

Architecture Compatible CPU

NG TEIK HUAT

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Electrical – Computer & Microelectronic System)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

JUNE 2014

iii

Dedicated, in thankful appreciation for support, encouragement and

understandings to my beloved mother, father, brothers and sisters.

iv

ACKNOWLEDGEMENT

In order to achieve everything that I have done for my final year project, I

received a lot of helps from many people along the way. They have guided me, advised

me and encouraging me.

First and foremost, I would like to express my heartily gratitude to my

supervisor, Prof. Dr. Mohamed Khalil bin Hj. Mohd Hani for the guidance and

enthusiasm given throughout the progress of this project.

My appreciation also goes to my family and all my beloved friends and MEH

course mate who has been so tolerant and supports me along the year. Thanks for their

encouragement, love, emotional and financial supports that they had given to me.

Nevertheless, my great appreciation dedicated to Faculty of Electrical

Engineering, UTM for the environment and material support and encouragement

throughout the project.

v

ABSTRACT

Digital system designers nowadays facing the challenge of need to come out

new design or improved design fast such as IP core or interface system that will be

embedded into System-On-Chip. Rapid prototyping requires platform for development

design and testing of any digital system. A platform that is flexible to fine tune where

the source code or the internal design is visible and accessible by designer is preferable

to increasing the opportunity for design exploration. Technology leading company

such as Intel, Altera, and Xilinx have these platform ready but with limited access to

internal design and source code as it is their company IP and trade secret.

Currently most digital system was design and implemented on FPGA before

goes into production. The design in hardware description language like Verilog HDL

was compiled into physical netlists using compiler tools such as Synopsys, Altera

Quartus II and consume by the FPGAs, thereby reducing the design cycle while

increasing the opportunity for design exploration.

vi

ABSTRAK

Rekaan sistem digital hari kini menghadapi cabaran kritikal disebabkan dunia

reka bentuk dalam era baru ini mengunakan cara IP untuk membentuk sistem baharu

dengan secepat mungkin dalam bentuk SOC. Prototaip perlu dibentuk secepat

mungkin untuk membolehkan kajian, eksperimen dan analisis dijalankan untuk sistem

baru. Sebuah platform yang fleksibel untuk diubahsuai di mana kod wujud dan boleh

diakses adalah keperluan untuk memudah and mempercepatkan proses mencipta

sistem digital baru. Syarikat teknologi terkemuka seperti Intel, Altera, dan Xilinx

mempunyai platform ini bersedia tetapi dengan akses terhad kepada reka bentuk

dalaman dan kod kerana ia adalah rahsia perniagaan.

Pada masa kini kebanyakan ciptaan sistem digital baru melalui FPGA sebelum

ke pengeluaran sebenar. Reka bentuk dalam kod bahasa seperti Verilog HDL

menggunakan program seperti Synopsys, Altera Quartus II dan keluaran alat-alat ini

diguna oleh FPGAs , ini akan mengurangkan kitaran reka bentuk di samping

meningkatkan peluang untuk penerokaan reka bentuk baru.

vii

TABLE OF CONTENT

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENTS iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES ix

 LIST OF FIGURES x

 LIST OF ABBREVIATIONS xii

 LIST OF APPENDICES xiii

1 INTRODUCTION 1

 1.1 Background 1

 1.2 Problem Statement 2

 1.3 Objective 3

 1.4 Scope 4

 1.5 Summary of works 5

2 LITERATURE REVIEW 6

 2.1 Architecture and micro-architecture of CPU 6

 2.1.1 X86 ISA 6

 2.1.2 RISC 8

 2.1.3 CPU general architecture 9

 2.1.4 Pre-decoder (Instruction Length Decoder)

2.1.5 Local Branch Predictor

10

11

 2.2 Zet Processor 12

 2.3 Instruction Length Decoder 14

viii

 2.3.1 RAPPID (Revolving asynchronous Pentium

 processor instruction decoder)

15

 2.3.2 Heads and Tails: a variable length instruction

 format fetch and decode

19

 2.3.3 Speculative Instruction Length Decoder

22

3 RESEARCH METHODOLOGY 24

 3.1 Research Process and Design Method 24

 3.2 High Level Microarchitecture 29

 3.3 Pre-decoder Unit 33

 3.4 PC control Unit 36

 3.5 Branch Prediction Unit 42

 3.6 Arithmetic and Execution Unit 45

4 RESULT AND DISCUSSION 46

 4.1 Introduction 46

 4.2 Verification 47

 4.1.1 Test Program I 48

 4.1.2 Test Program II

4.3 Pre-decode performance comparison versus Zet

49

54

5 CONCLUSION AND RECOMMENDATIION 56

 5.1 Conclusion 56

 5.3 Future Work and Recommendation 57

REFERENCES 58

APPENDICES 61-93

ix

LIST OF TABLES

TABLE TITLE PAGE

3.1 Interface description table for fetch_unit 31

3.2 Instruction pattern decoding and control signal table 34

3.3

3.4

3.5

Interface description table for predecoder

Interface description table for NextPC

Interface description table for Branch Prediction Unit

35

40

44

x

LIST OF FIGURES

FIGURE TITLE PAGE

2.1 Instruction format for x86 ISA 6

2.2 EFLAGS status register 7

2.3 Generic CPU instruction execution flow and x86 fetch-

decode flow

8

2.4 Instruction length decoder state machine 10

2.5 Local Branch Predictor 11

2.6 Zet processor Instruction flow 12

2.7 Zet processor Instruction Length Decoder state machine 14

2.8 RAPPID Micro-Architecture 16

2.9 Tag Unit 17

2.10 Byte Unit 18

2.11 Heads-and-Tails (HAT) format 19

2.12 Comparison of variable-length decoding in a

conventional variable-length scheme and a HAT

scheme

21

2.13 A speculative instruction length decoder 23

3.1 Research Methodology 24

3.2 Encoding of ModR/M field 26

3.3 Bus Functional Model (BFM) 28

3.4 High level functional block diagram (FBD) –refer

appendix B1 for SystemVerilog code

29

3.5 High Level Algorithmic State Machine (ASM) chart 30

3.6 Input-Output Block Diagram (IOBD) for fetch_unit 31

3.7 Functional block diagram for predecoder (refer

appendix B2 for SystemVerilog code)

33

3.8 Lookup table 34

xi

3.9 Input-Output Block Diagram (IOBD) for predecoder 35

3.10 NextPC functional block diagram (refer appendix B3

for SystemVerilog code)

37

3.11 NextPC muxing circuit 38

3.12 NextPC ASM chart 39

3.13 Input-Output Block Diagram for NextPC 40

3.14 Branch Prediction unit functional block diagram (refer

appendix B4 for SystemVerilog code)

42

3.15 Branch Prediction ASM chart 43

3.16 Branch Prediction Input-Output Block Diagram 44

3.17 High level functional block diagram for arithmetic and

execution unit

45

4.1 Bus Functional Model, BFM (refer Appendix B5 for

SystemVerilog code)

47

4.2 Snapshot of verification result for pre-decode using

test program I

48

4.3 Snapshot of verification result for PC control using

test program I

49

4.4 Snapshot of verification result for pre-decode using

test program II

50

4.5 Snapshot of verification result for PC control using

test program II

51

4.6 Snapshot of conditional branch instruction execution

simulation waveform

52

4.7 Waveform snapshot for branch prediction hit and miss

scenario

53

4.8 Simple program use to measure generic pre-decode

performance

54

4.9 Pre-decode performance analysis for this project

design unit (Fetch unit)

54

4.10 Pre-decode cycles consume by Zet processor for a

single move instruction

55

4.11 Pre-decode performance analysis for Zet processor 55

xii

LIST OF ABBREVIATIONS

CPU - Central Processing Unit

ISA - Instruction Set Architecture

RISC - Reduced Instruction Set Computer

CISC - Complex Instruction Set Computer

ILD

BPB

ASM

- Instruction Length Decoder

- Branch Prediction Buffer

- Algorithmic State Machine

NextPC

PC

BFM

RAPPID

- Next Program Count Control Unit

- Program Counter

- Bus Functional Model

- Revolving Asynchronous Pentium Processor

Instruction Decoder

HAT - Heads and Tails

xiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A1 Supported Opcode list (00-1F) 62

A2 Supported Opcode list (20-3F) 63

A3 Supported Opcode list (40-5F) 64

A4 Supported Opcode list (60-7F) 65

A5 Supported Opcode list (80-9F) 66

A6 Supported Opcode list (A0-BF) 67

A7 Supported Opcode list (C0-DF) 68

A8 Supported Opcode list (E0-FF) 69

B1 SystemVerilog code for program control instruction

class top module “fetch_unit”

70

B2 SystemVerilog code for pre-decoder and lookup table

module

72

B3 SystemVerilog Code for NextPC module and its sub

modules

75

B4 SystemVerilog Code for Branch Prediction Unit 76

B5 SystemVerilog Code for BFM unit 81

C1 Assembly code & machine code for Test Program I 85

C2 Assembly code & machine code for Test Program II 86

D1 Verification result : pre-decode for Test Program I 89

D2 Verification result : PC control for Test Program I 91

D3 Verification result : pre-decode for Test Program II 92

D4 Verification result : PC control for Test Program II 93

1

CHAPTER 1

INTRODUCTION

1.1 Background

 Central processing unit (CPU) is a microprocessor that served as the Heart of

computer. Microprocessors are regarded as one of the most important devices in

modern worlds as more and more electronics gadgets are depending on it. CPU is the

hardware unit in a computer that carries out the instruction of a computer program

such as logical operation or arithmetic operation which in other words providing

computational ability and control. CPU nowadays also referred as core since this

important unit of a computer is now embedded with others important Intellectual

Property (IP) unit in a single chip in a form called System-On-Chip (SOC).

 Typical CPU are served for general purpose computation which support a wide

range of general arithmetic and logic operation unlike others dedicated processor

which design and optimized for certain function or algorithm. CPU are usually

incorporate arithmetic and logic functional units as well as the associated control logic,

instruction processing circuitry, and a portion of the memory hierarchy known as

Cache that is to enhanced the speed of memory Read and Write operation from and to

memory device such as RAM. Portions of the interface logic for the input/output (I/O)

and memory subsystems may also be infused.

 Instruction set Architecture (ISA) defines how software programmers

communicates with the hardware in CPU from the perspective of a software

programmers, mean how hardware response to certain code in software. . In this

2

project, we will focus on the x86 ISA compatible design. x86 ISA is a Complex

Instruction Sets Computer (CISC), extra effort required in instruction decode compare

to RISC as their instruction is more complex in term of variable length and format,

while RISC is always fixed length instruction in general. RISC ISA support only

simple addressing modes, memory access only through two instruction, load and store,

but x86's support multiple complex addressing modes, many instructions have memory

access flow.

In this project, the exploration is focus on instruction fetch and pre-decode unit

of the x86 ISA design. Zet processor which is an open implementation of the x86 ISA

also known as IA-32 (Intel Architecture-32) available in opencore.org is use as a

reference in exploring the design of instruction fetch and pre-decode unit of an IA-32

core. Zet is synthesizable and has been FPGA proven, currently four different FPGA

boards are supported which are Xilinx ML-403, Altera DE0, Altera DE1 and Altera

DE2-115 boards.

1.2 Problem Statement

Digital system designers nowadays facing the challenge of need to come out

new design or improved design fast such as IP core or interface system that targeted

for embedded into System-On-Chip. Rapid prototyping requires platform for

development design and testing of any digital system. The platform in this context

refer to a processor core that able to attached with any of our newly designed co-

processor or an interface system or others IP to test its functionality and performance

in an environment such as Field-Programmable Gate Array (FPGA). A platform that is

flexible to fine tune and open to access where the source code or the internal design

that is visible and accessible by designer is preferable where it easier for debug and

increase the opportunity for design exploration. Intel processor that implement x86

ISA also known as Intel Architecture (IA) which is widely use in the world seems to

lack of x86 ISA compatible platform that is open or free for research and development

work currently.

3

Platform provider from leading company available now such as Intel (Quark),

Xilinx (Micro-Blaze) and Altera (Nios) are not open source. Their internal designs are

IP and Trade Secret that is not for sale or available for public affordable price. Hence,

preventing researchers to access into the core design to make detail monitoring or

debugging and modification while using this platform to do research work. Open

source platform available in internet are usually lack of proper documentation and

might be incomplete. While a good documentation is very important to provide good

confidence level to the designer when using the platform and also the documentation

affect the reusability of the design and also the support of extending the design. Extra

effort will be requires from the designer that using the platform for debugging the

design when encounter any issue. Zet processor is x86 ISA compatible processor

where its design source codes are freely available in OpenCore.org. Although it has

proven its functionality through FPGA emulation but the design methodology and

specification are not proper documented giving us hard time to understand the design

purely through analyzing the design source code.

 The Zet processor design does not pipeline, which is probably due to the issue

with CISC type ISA of variable length for instruction that requires effort to pre-decode

the instruction length during instruction fetch stages before actual decoding the

opcodes and functions of the instructions. Zet implement the instruction length decoder

with a traditional instruction length decoder, a state machine that analyze byte per byte

of the instruction bytes chunk fetch. This method causes the cycles requires for pre-

decode is inconsistent with the variable of length of instructions and make it hard to

be pipeline.

1.3 Objectives

Our main objective is to design an X86 ISA processor. The processor design

was separate to two parts, program control instruction class and arithmetic instruction

class. In this project, the program control instruction class was handled. The objective

in this project is:

1. To analyze the Zet processor design of it instruction fetch control and

4

program control instruction class unit.

2. To modify the instruction fetch stages such a way that enable pipeline design.

3. To develop verification environment such as test benches and bus functional

model (BFM) serve to analyze, verify and bench marking the design with

proper documentation.

1.4 Scope

This project is one part of a large project where the final goal is to design a x86

ISA cpu. The core design is separated into two parts. First part, program control

instruction class which is responsible to handle the program control, PC and all

program control related instruction such as conditional jump and subroutine call also

including the instruction fetch and pre-decode of x86 instruction set. Second part, the

arithmetic instruction class where this portion will be handling all logical and

arithmetic operation and data memory access of all related instructions such as mov,

add, store and load. In this project my scope is to design the program control instruction

class that is x86 ISA compatible. The arithmetic instruction class will be handle by my

counterpart.

In details, the program control instruction class includes the instruction fetch

unit and program control instructions such as branch and jump handling unit which

can be decomposed into three main block of design which is the Instruction Pre-

decoder unit that decodes the instruction length, the Branch Prediction Unit to improve

conditional branch type instruction handling in pipeline design, and the next

instruction address (PC) computation unit.

The scope of design specification will support only fix opcode length one byte

and prefix are not supported. The data size of the processor supported is 16bits. The

instruction bytes chunk are assume readily in instruction cache when processor issue

instruction fetch and no extra waiting time for cache to get data from RAM. The

program control instruction class will be responsible to provide pre-decoded

instruction and any control signals requires to the arithmetic instruction class which is

5

handled by another person at the same time. The design will be modeled in Verilog

HDL and using synthesis tool Altera Quartus II SE then simulate with Modelsim-

Altera.

1.5 Summary of works

 This project aim to enable the pipelining base on Zet processor designs which

then requires modification in instruction fetch and pre-decode unit so that is fulfil the

requirement for pipeline design. This project does a one cycle instruction length

decoder which realize using lookup table method to resolve the issue of inconsistent

variable cycles to pre-decode instruction length that gating pipeline design. To enable

pipelining, the program control instruction handling will need to modify accordingly

such as stall the stages when pending flag status and check flag only when flag register

data is updated for condition jump instruction. To further improve the performance, a

branch prediction unit is design with simple 2 bit local branch predictor to predict for

conditional branch instruction outcome. Finally a comparison between Zet processor

instruction fetch and pre-decode performance with this project design is made and

reported. With the enable of pipeline, higher throughput can be achieved versus the

original Zet processor design.

58

REFERENCE

1. G. Antonio, L. Fernando and M. Grigorios, Processor Microarchitecture: An

Implementation Perspective, Morgan & Claypool, 2011.

2. C. S. SU, Implementation of Instruction Decoding Logic Using Hardware and

Software, Faculty of Electrical Engineering, Universiti Teknologi Malaysia.

3. Intel Corporation, Intel® 64 and IA-32 Architecture Software Developer's

Manual Vol.1 Basic Architecture, Intel Corporation.

4. A. Donald and A. Dror, Architecture of Pentium Processor, 1993..

5. G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, P. Roussel,

The Microarchitecture of the Pentium 4 Processor, Desktop Platforms Group,

Intel Corp., 2001.

6. T. Shanley, Pentium Pro and Pentium II System Architecture, MindShare, Inc.,

1997.

7. T. Shanley, x86 Instruction Set Architecture, MindShare, Inc., 2009.

8. A. Fog, Instruction tables Lists of instruction latencies, throughputs and micro-

operation breakdowns for Intel, AMD and VIA CPUs, Technical University of

Denmark, 2013.

9. Mamun Bin Ibne Reaz, Md. Shabiul Islam, Md. S. Sulaiman, A Single Clock

Cycle MIPS RISC Processor Design using VHDL, Faculty of Engineering,

Multimedia University, 2002.

10. K. S. Stevens, et al., RAPPID: An Asynchronous Instruction Length Decoder,

Strategic CAD Lab, Intel Corporation, 2001.

59

11. P. Heidi and A. Krste, Heads and Tails: A VariableLength Instruction Format

Supporting Parallel Fetch and Decode, MIT Laboratory for Computer Science,

2001

12. A. Fog, The microarchitecture of Intel, AMD and VIA CPUs, Technical

University of Denmark, 2014.

13. W. Andrew and C. Alex, Executing Compressed Programs on An Embedded

RISC Architecture, Department of Electrical Engineering, Princeton University,

1992.

14. V. R. Madduri, Instruction Length Decoder, U.S. Patent 7 640 417 B2, Dec. 29,

2009.

15. S. Hauck, Asynchronous design methodologies: An overview, Proc. IEEE, vol.

83, pp. 69–93, Jan. 1995.

16. K. S. Stevens, et al., CAD directions for high-performance asynchronous

circuits, in Proc. Digital Automation Conf. (DAC’99), June 1999, pp. 116–121.

17. W. Chou, et al., Average-case optimized technology mapping of one-hot

domino circuits, in Proc. Int. Symp. Advanced Research in Asynchronous

Circuits and Systems, 1998, pp. 80–91.

18. D. Kearney, Theoretical limits on the data dependent performance of

asynchronous circuits, in Proc. Int. Symp. Advanced Research in

Asynchronous Circuits and Systems, Apr. 1999, pp. 201–207.

19. M. Roncken, et al., CA-BIST for asynchronous circuits:A case study on the

RAPPID asynchronous instruction length decoder, in Proc. Int. Symp.

Advanced Research in Asynchronous Circuits and Systems, 2000, pp. 62–72.

20. C. J. Myers, Computer-aided synthesis and verification of gate-level timed

circuits, Ph.D. dissertation, Dept. of Electr. Eng., Stanford Univ., Stanford, CA,

Oct. 1995.

21. K. Y. Yun and A. E. Dooply, Optimal evaluation clocking of self-resetting

domino pipelines, Proc. 1999 Asia and South Pacific Design Automation

Conference, Jan. 1999, Hong Kong, pp. 121-124.

60

22. J. S. Coke, et al., Determining Length of Instruction with Address Form Field

Exclusive of Evaluating Instruction Specific Opcode in Three Byte Escape

Opcode, U.S. Patent 8 402 252 B2, Mar. 19, 2013

23. C. Lefurgy et al., Improving code density using compression techniques, in

MICRO-30, pages 194–203, Research Triangle Park, North Carolina,

December 1997.

24. G. Araujo et al., Code compression based on operand factorization, in

MICRO-31, pages 194–201, December 1998.

25. V. Narayanan, B.A. Chappell and B.M. Fleischer, Static timing analysis for

self-resetting circuits, Proc. Int. Conf. Computer Aided Design (ICCAD), 1996.

26. H. Zheng, Specification and compilation of timed systems, Master’s thesis,

University of Utah, 1998.

27. G. M. Zeus, Zet - The x86 (IA-32) open implementation, http://zet.aluzina.org,

May 5, 2014.

