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ABSTRACT

This research is on experimental studies of the pulse of detonation engine

(PDE) at High Speed Reacting Flow Laboratory (HiREF) where the pulse detonation

engine was equipped with a new design of a fuel-air premixed intake system. Pulse

detonation engine is a power conversion device with simple mechanism and yet

efficient. A premixed intake system is fabricated and assembled with a detonation

tube with dimension of 50 mm inner diameter and 600 mm in length. Stoichiometric

condition of fuel-air mixture for repetitive high-speed combustion is prepared for the

pulse detonation engine with operating frequency system of 5Hz. Fuel and oxidizer

are injected using gas injectors into air flow in intake system manifolds that

connected to mixing chamber and detonation tube. The pressure produced in the tube

is measured using pressure transducers located along the detonation tube. The pulse

detonation engine model is evaluated with thermodynamics theory models; Ideal

pulse detonation engine (PDE), Brayton cycle and Humphrey cycle. The

thermodynamic cycle efficiency of the pulse detonation engine is analyzed and

compared with non-premixed pulse detonation engine for evaluation. The simulation

result indicated that ideal PDE operates at 0.24 thermal efficiency. The ideal pulse

detonation engine is predicted to produce 276.3 N with generated impulse up to

68.5 s in stoichiometric condition of propane and air mixtures.
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ABSTRAK

Penyelidikan ini adalah mengenai kajian eksperimen enjin letupan berdenyut

(PDE) di makmal aliran tindak balas berkelajuan tinggi (HiREF) di mana enjin

letupan berdenyut dilengkapi dengan system pengambilan alat pracampuran bahan

api dan pengoksida yang baru. Enjin letupan berdenyut adalah alat penukaran kuasa

dengan mekanisme mudah tetapi berkesan. Sistem pengambilan pra-campuran dibuat

dan dipasang ke tiub letupan berdimensi 50 mm diameter dalam dan 600 mm

panjang. Enjin letupan berdenyut dengan kekerapan tembakan system operasi

disediakan untuk pembakaran berkelajuan tinggi berulang untuk campuran bahan api

dan pengoksida dalam keadaan stoikiometri pada 5 Hz. Bahan api dan pengoksida

disuntik menggunakan penyuntik gas ke dalam aliran udara di manifold sistem

pengambilan yang bersambung dengan kebuk pencampuran dan letupan tiub. Jumlah

tekanan yang dihasilkan diukur menggunakan transduser tekanan yang berada di

sepanjang tiub letupan itu. Enjin letupan berdenyut model dinilai dengan

menggunekan kitaran termodinamik model teori; Enjin letupan berdenyut ideal,

kitaran Brayton dan kitaran Humphrey. Kecekapan kitaran termodinamik daripada

enjin letupan berdenyut dianalisis dan dibandingkan dengan enjin letupan berdenyut

bukan pracampuran untuk penilaian. Hasil simulasi menunjukkan bahawa PDE ideal

beroperasi pada 0.24 kecekapan haba, . Enjin letupan berdenyut ideal telah

diramalkan untuk menghasilkan 276.3 N dengan impuls yang dijana sehingga 68.5 s

dalam keadaan stoikiometri untuk campuran propana dan udara .
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Much interest to utilize pulse detonation engine technology for propulsion

system [14] [21] and power generation [40] has been seen in the past twenty

manufacture and low in maintenance. Implementation of the pulse detonation engine

in commercial application requires continued development in research to achieve

sustained and reliable technology. One of the challenges in developing a pulse

detonation engine is to have a fast and efficient mixing of fuel and oxidizer and

sustain detonated in a controlled fuel-air mixture [27]. Fast and efficient mixing

related to the time of mixing between fuel and oxidizer to achieve a homogenous

mixture where high frequency operation of the pulse detonation engine can be

achieved. The design of fuel/air intake system is proposed to contribute for premixed

mixture process and perform better performance than previous non-premixed pulse

detonation engine generations. Moreover, the control system's ability in detonation

ignition and parameter conditions can affect the pressure velocity of the thrust.

There are two types of combustion occurs in pulse detonation engine function

mechanism which are Deflagration and detonation that separated by degree of

velocity. Detonation is one of combustion mode where the phenomenon occurs in a

thermodynamic properties such as pressure and temperature react and increase

sharply across the detonation wave. On the other hand, deflagration is a common

combustion mode in the combustion process and the flame propagates in transonic

velocity of less than 10 m/s. Deflagration is the conventional type of combustion in
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internal combustion engine. Deflagration occurs in slow reaction and slow

combustion with pressure nearly constant during the process.

Figure 1.1 Combustion modes [42]

Fuel-air premixed combustion is a process where mixing of fuel and air is

done before the mixing is applied heat and combustion occurs [20]. Fuel and air ratio

based on equivalence value [30], Ø produce the required mixture for combustion

process in a controlled manner. Detonation characteristics of pulse detonation engine

by different mixing reactions for premixed and non-premixed resulting different

effect on pressure force of detonation waves as different detonation characteristics of

pulse detonation engine. The pulse detonation engine is designed and initiated with

repetitive detonation wave within a short time cycle for fast and homogeneous

Deflagration
Subsonic Combustion spread by thermal

conductivity

Unsteady Pulsed
or Intermittent

-Pulse Jets

Steady or
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-Turbojets
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-Scramjets

Detonation
Supersonic Combustion spread by shock

compression
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Intermittent

-PDE

-PDRE

Steady or
Countinuous

-Scramjets

-RDE
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mixing of component in the detonation chamber. The pulse detonation engine cycle

is applied with deflagration to detonation transition (DDT) mechanism in the ignition

process. Premixed intake system for fuel/air in the pulse detonation engine is a much

different system from previous studies in HiREF where non-premixed based pulse

detonation engine is used to operate and requires further analysis in thermodynamic

models to understand the pulse detonation engine model.

Figure 1.2 Linear system of power generation pulse detonation engine with piston

[41]

Figure 1.3 ‘TODOROKI’ test engine developed by Nagoya University in 2006

[21]
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1.2 Problem Statement

The utilization of high-speed combustion phenomena into pulse detonation

engine system operation generates potential in propulsion system. Without

application of moving parts such as compressor, pulse detonation engine produce

high pressure of impulse as thrust generated from detonation wave propagates to the

open end of detonation tube. A constant thrust can be achieved to power propulsion

purpose by repetitive detonation combustion using suitable configuration.

Development of the pulse detonation engine with designing operation and

configuration leads to optimal performance result. Design of pulse detonation engine

intake system is based on the real - design of the propulsion induction system for

fuel/air mixture. Further study on previous successes of repetitive pulse detonation

engine configuration is the benchmark for this pulse detonation engine study. The

Premixed intake system supplies constant volume and pressure process to achieve a

uniform, homogenous mixture in fuel and air. Prediction of high operation pulse

detonation engine is estimated from consistent output performance at optimum level.

There are a few factors needed to be considered to improvement premixed

intake system in the pulse detonation engine. Previous study non-premixed

combustion has a low chemical reaction in fuel/air mixture and operates at a low

operating frequency. Low efficiency of mixing the composition in the feeding

system limits the full maximum of pulse detonation engine potential. High operation

pulse detonation engine that operates with fast combustion process and high

operation frequency, the pulse detonation engine requires an upgrade in feeding

system design and combustible mixture [5]. Non-premixed combustion is producing

combustion at lower than maximum combustion ability. The Premixed intake system

strategy offers higher and faster chemical reaction in high-speed combustion system.

The pulse detonation engine is differentiated from its steady-flow

counterparts [34] is by the engine level of thermodynamic efficiency [2]. Analysis of

thermodynamic cycle is difficult and complex to evaluate. Assumption in

thermodynamic analysis, such air-cold assumption is one of the methods to evaluate

the thermodynamic cycle of an engine. Thermodynamic cycle efficiency is analyzed
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and compared to Humphrey, Brayton and Chapman-Jougent model [33]. High

thermodynamic cycle efficiency of the pulse detonation engine leads to further

saving in fuel consumption compared to non-premixed pulse detonation engine.

This study is to make thermodynamic cycle efficiency pulse detonation

engine using premixed is better efficiency than conventional non-premixed pulse

detonation engine. This effort is to maximize the fuel-efficiency in feeding system

where mixing composition is one of design tool options. Non-premixed combustion

is only producing a non-uniform combustion form and lower than maximum

combustion ability. But, the application of this concept in pulse detonation engine to

maximize the potential efficiency will be explored.

1.3 Research Objectives

The objective of the study is to develop a fuel-air premixed intake system of

the pulse detonation engine based on fuel-air ratio, which will boost the efficiency of

the thermodynamic cycle. The designed pulse detonation engine will be analyzed

and evaluated to determine efficiency potential using thermodynamic theory models.

The research also covers the comparison between premixed and non-premixed pulse

detonation engine results.

1.4 Scope of Research

The scope of this research is to design and develop pulse detonation engine

with a fuel-air premixed intake system and determine the thermodynamic cycle of

the pulse detonation engine.  It also compares the designed new intake system with

existing non-premixed pulse detonation engine.
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