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Abstract

Survey measurements are subject to random, systematic and gross errors. In practice, it is assumed that
measurements are random variables, follow the normal distribution and have redundancy. The method of least
squares estimation (ESE) is commonly used to process the redundant measurements. In the presence of
} gross errors, the results of ordinary ESE are corrupted. Consequently, an interactive post-LSE technique
’-z_;@; of robustified LSE (RLSE) is introduced for the detection of multiple gross errors in uncorrelated
surveying data. In RESE. the locations and magnitudes of such errors are recovered simultaneously, and
their effect on the solution are areatlv reduced.

1.0 INTRODUCTION

Much of the surveyor's task involves the acquisition and analysis of survey measurements. Such measurements are
subject to random, systematic and gross errors (Caspary, 1987; Halim, 1992). In practice, redundant measurements are
made to provide quality control and check for errors. The method of least squares estimation (LSE), which
minimizes the sum of the weighted squares of the residuals, is commonly used to process the redundant
measurements and to obtain a unique solution.

In principle, the method of LSE is valid without any assumption with respect to errors. However, in qualitative
analysis and statistical evaluation of LSE results, it is generally assumed that the measurements contain only random
errors and are regarded as random variables. These assumptions are important due to the high sensitivity of LSE to
both systematic and gross errors (Halim, 1995a).

In reality, the measurements may contain gross errors. The effects of such errors are distributed over the residuals,
and lead to questionable results and interpretations. Erroneous measurements do not necessarily have large residuals, or
vice versa. LSE alone is therefore not suitable for dealing with gross errors.

For high precision applications such as deformation monitoring, gross errors need to be detected and localized, prior to
deformation analysis. Whenever possible, gross errors should be tackled before LSE (i.e. pre-LSE). by means of
screening and independent checks (Cooper, 1974, 1987; Secord, 1986).

Gross errors that remain in the measurements can be detected after LSE (i.e. post-LSE) based on the techniques
employing the analysis of residuals. Generally (actually not necessarily) large residuals will indicate erroneous
measurements. Whenever such residuals are detected, the corresponding measurement is examined to find out if a
gross error can be found. That measurement is then deleted or remeasured.

The most popular post-LSE techniques for gross error detection in engineering surveying are Baarda's (data
snooping), Pope's (Tau) and the Danish methods. Further details on this aspect are given by Cross and Price (1985),
Caspary (1987), Chen et al (1987), Steeves and Fraser (1987), Kubik and Wang (1991), Gao et al (1992) and
Schwarz and Kok (1993).

This paper discusses and examines the modification of the Danish method for detection and localization of multiple
gross errors in uncorrelated surveying data. The modified method is known as robustified LSE (RLSE) since it uses
LSE and the effects of gross errors on the solutions are reduced.



Halim Setan

2.0 REVIEW OF LSE AND OUTLIER TESTS
Equations for LSE using observation equations (Halim, 1995a) are shown here without further derivation and
explanation. More details are found extensively in surveying literature, for example Mikhail (1976), Mikhait and
Gracie (1981), Cross (1983), Vanicek and Krakiwsky (1986), Cocper (1987), Koch (1987) and Leick (1990). The
fundamental equations for LSE of full rank (only if Cayley inverse N exist) with n observations, m parameters and
redundancy r are (Halim, 1995a):

|=f(x) are the functional models

W=0,/2,"=Q," where ¢ is the a priori variance factor.
Ax=b+tv are the observation equations

Nx=u are the normal equation where N=A'WA and u=A'Wb
£=N"u=(A'WA)'A'Wb

%,=x,*X are the updated parameters

Q..=Q:=N"=(A'WA)"! are the cofactor matrix

V=AX-b are the residuals

Q.=Q-AN'A=W--AN"A!

5,7=V'WV/r where r=n-m is the number of degrees of freedom or redundancy
1.=1+V are the adjusted observations

Q,=ANA!

If observations are uncorrelated, W is diagonal matrix, and weight of observation i is

w=0,/0.? where o Is the variance of observation i
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Statistical tests are used to assess the results of LSE. The commonly used tests are test on the estimated variance
factor (i.e. global test) and the outlier test (i.e. local test).

It is likely that significant gross errors will increase the value of the estimated variance factor. For this reason, it is
usual to adopt a one-tailed global test where

H.: 8. =0’ and H,: 5,0’

0 [ o

To test H,, the test statistic T is computed

T=0'W¥/6,2 ~ ¥,

(14)

(15)

H, is accepted (i.e. the test passes) if T<y?, ,, where o is the significance level (typically 0.05). Otherwise H, is
rejected (i.e. the test fails).

If the test passes, it is assumed that, overall, there are no model or gross errors, and the results of LSE can be
accepted. Failure of this test indicates either the model is incorrect/incomplete, the weight is unrealistic, or the
existence of gross errors in the measurements. Hence, further investigations or statistical tests (i.e. outlier test) are

needed.

The outlier {or local) test examines the standardized residuals v (Caspary, 1987)

H,: E{v'}=0 or each ¥, is free from gross error

H,: E{v/'} =0 or one residual contains gross error

The test statistic is

or

T,=v/={vi/(0,0:)|~N(0,1)
’rp:{ll‘: !r Qx/( Aoooh) ‘ -t

(16)

(17)
(18)
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Equation (17) is used when ¢, is known, and it is called un-studentized test. This test assumes that the residuals
are normally distributed. Equation (18) (studentized test) is employed when o, is unknown and is estimated by &,2.
Evaluation of Q;; in order to get oy; will require extensive computation, as shown in equation (9). For uncorrelated
observations, only diagonal elements of Q, need to be computed, and expression for o,; can be written as (Halim,
1995a)

o =o¥/(r) (19)
ri=1-aN"'a'w,
where
o =standard deviation of observation i
r =redundancy number of observation i
a;=elements of design matrix A for observation i
N'=Cayley inverse of N
w=weight of observation i

3.0 TECHNIQUES FOR GROSS ERROR DETECTION

In practice, the application of the above tests (i.e. equations 17 and 18) with the appropriate standardization
procedure is known as data snooping (Schwarz and Kok, 1993), and consists of either Pope's (Tau) or Baarda's (data
snooping) methods. Pope's method uses the studentized test and standardizes for Type | error («} only. Baarda's
method uses the un-studentized test and standardizes both Type I and Type II errors (« and B).

Pope's or Tau method (Pope, 1976) assumes o,* as unknown, and applies the estimated &% in computing the
normalized residuals. The test statistic (equation 18) is one-dimensional

T,=9/(8,00)~1, (20)
where r is the number of degrees of freedom (redundancy), and « is standardized as

a.=1-(1-a)""=a/n (21)
where n is the number of the observations. H, is accepted if

<1 where o =a,/2 (22)

t l = ‘rao
P

Otherwise (if T>1, ), H, is rejected, and the corresponding observation must be examined.

The computation of the critical value of © is given by Pope (1976), together with the listing of a useful Fortran
subroutine.

Baarda's method (Baarda, 1968) assumes that o,” is known a priori, and employs a multi-dimensional test. The test
statistics (equation 18) is

T,=V/(0,04)~N(0,0) (23)
H, is accepted if | T,| <N_,. Given « 0.05 (5%), the critical value of N is 1.96.
In the actual implementation of Baarda's method, both Type [ and Type II errors are taken into account. Typical
values for standardized «, and B, are 0.1% and 20% respectively leading to the critical value u,, of 3.29 (Figure 1).
H, is accepted if

T 1/
1Tb\' < Uy \24)

Otherwise H, is rejected if T,>u,,. Interpretation of the test is similar to Pope's method.
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Baarda's method also provides a measure of reliability, both mternal and external. Some expressions {or reliability
of cach observation i (datum independent quantities) are:

internal reliability

r=l-aN"a'w, 25)
MDGE=v=0,(1,/ )" (20)
8 =A (1), (27)

r=redundancy number ol observation i

MDGE,=v;=size ol the marginally detectable gross errors (MDGL) ih observation i.
&, =influential factor or global distortion paramelters of observation i
r,=non-centrality parameters, computed from w, and p,

where

A typical value of A (with «, 0.1% B, 20%) is 1 7. Baarda (1968) provides a nomogram for the evaluation of u_,,
(with respect to type | ervor) and A, (with respect to degrees of freedom and Type Fand Type 11 errors). Figure |

shows the nomogram for §,-20%.

Both Pope's and Baarda's methods assume that just one measurement is affected by a gross crror. In fact, as it is
likely that the measurements contain multiple gross errors, the general procedure for both methods s (o ¢liminate
one gross crror (and the suspected measurement) at a time, and to repeat the LSE until no grass errors are detected.
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Figure 1. Baarda's nomogram for g, 20% (taken from Caspary. 1987)

The Danish method was proposed by Krarup in 1980 (Caspary, 1987, Strauss, 1983). {n the Danish method. larg:
(estimated) residuals are associated with gross errors.
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The objective of this method is to find observations which are not consistent with the majority and to exclude them
from the LSE by reducing their weights (i.e. de-weighting). In this manner, weights are treated as dynamic
quantities such that only the consistent measurements are used effectively in the LSE process. It is expected that
the effects of gross error on the final estimation will be insignificant.

Application of the Danish method is very simple (Strauss, 1983). After a conventional LSE using a priori weights,
the estimation is repeated several times during which the weights of certain measurements are reduced according
to their residuals after the preceeding estimation. Weights of the observations with higher residuals are reduced (i.e.
low weights), while the weights of observations with lower residuals (i.e. lower than a certain limit) are held stable
(equation 28).

With a proper and suitable choice of de-weighting function and constant (factor) ¢, convergence is achieved. In the
final solution, weights of outlying observations will approach zero, effectively removing them from the LSE.
Moreover, the observations affected by gross error are found with corrections of the same order of the magnitude
of their corresponding residuals but with reversed sign.

However, a proper termination criteria for the iteration and a suitable weighting factor are essential for the
successful implementation of the Danish method.

4.0 ROBUSTIFIED LSE

In practice, the de-weighting schemes for the Danish method are based on trial and error, see for example Kubik
et al (1985), Jorgensen et al (1985), Strauss (1983) and Kubik et al (1988). However, simulation studies with known
gross errors indicate that most of the de-weighting schemes either flagged additional measurements, or were unable
to detect some of the errors. The following de-weighting scheme (modified from Caspary, 1987) is found acceptable
from experimenting (Halim, 1992) :

w=l/o? ©8)
if [V, <limit; p=1.0; w;'=p,w; (weight unchanged)

if |V,[>limit; p/=e”; w,/=p,w; (weight changed)

limit=co;0o,

={vil/(coi0,)

¢ is the weighting factor (usually between 2.0 and 3.0)

If use the standardized residuals (equations 18 and 19)

V=0/(5,01,"2): (29)
if [V/'|<c; p=1.0; w,'=pi*w; (weight unchanged)
if |0,]>¢c; p=e; w'=p;*w, (weight changed)

In principle, the developed technique of robustified LSE (RLSE) uses the above de-weighting scheme (equation
28) and provides a facility for variation of the weighting factor. In addition, global and local tests are used as
stopping criteria, together with reliability analysis to determine the capability of gross error detection.

The formulation of the developed interactive procedure for RLSE of uncorrelated measurements can then be
summarized as follows:

(a) During and after ordinary LSE (section 2.0), using the weights w;, compute the estimated residuals ¥, and
the estimated variance factor 5,2 The one-tailed global test (equations 14 and 15) is employed. As the
global test is not sensitive enough, a local test based on Pope (equations 20 and 22) is also employed. If
both tests pass, the LSE results are acceptable, and step (e) (below) can be executed for reliability analysis.
Otherwise, a RLSE must be performed, via steps (b), (¢) and (d).

(b) Define the de-weighting scheme (equation 28) and weighting factor c. It is recommended that RLSE is
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begun with a factor ¢ of 3.0 (i.e. bigger factor) to avoid the possibility of additional flagging of good or
acceptable measurements. The same factor ¢ is applied during RLSE until no observation weights are
changed. Factor c is then reduced interactively by 0.1 (new ¢ becomes 2.9, 2.8 and so on) until the weights
of some observations are changed. If ¢ becomes too low, for example less than 1.5, RLSE should be
stopped. The use of standardized residuals (equation 29) is also useful.

(c) Compute new weights for all the measurements (i.e. w;"). In this manner, weights of measurements with
{; greater than the limit (i.e. suspect measurements), will be reduced. Otherwise, the previous weights are
maintained (equation 28).

(d) A new LSE is carried out using the new weights. This process of re-estimating and de-weighting (a, b and
¢) is iterated until the solution converges, using the selected ¢ factor in (b). If both global (equations 14
and 15) and local (equations 20 and 22) tests are passed, the procedure is stopped. Otherwise, the ¢ factor
is reduced again, and the procedure is repeated until the termination criteria are met (i.e. both global and
local tests are passed).

(e) Reliability analysis employs equations 25, 26 and 27.
Once the stopping criteria are met, two options are possible, either direct or indirect use of RLSE.

In the first option, all the changed weights can be drastically reduced close to zero (but not too close in order to
avoid numerical instability) in the final computations. The purpose is to minimize or greatly reduce the effects of
measurements with gross errors on the final solutions of coordinates, trace, rmse and residuals. Results of the RLSE
will be the same as ordinary LSE without the erroneous or flagged observations.

In the second option, results of RLSE are used for checking purposes. Deweighted (i.e. erroneous) measurements
need to be carefully examined. and deleted or remeasured as necessary, leading to a new data set. In this case, a new
LSE must be carried out with the new data, to arrive at a final result.

The method of RLSE is capable of detecting and localizing gross errors correctly since both global and local tests
are used to verify the results. Another important aspect is related to reliability analysis. Redundancy numbers
together with MDGE will indicate whether a gross error can be detected or not. If the redundancy number for a
particular measurement is very small (i.e. very large MDGE), gross errors in that measurement will be left
undetected since there is very little controllability. On the other hand, a redundancy number close to unity indicates
that the effects of that measurement (and gross error in it) on the solution are almost insignificant.

Procedure to speed up tihe computations is discussed in Halim (1995a). In using RLSE the observations should not
be de-weighted drastically (to speed up the computation), to avoid the possibility of flagging good observations or
non-detection of actual gross errors.

The RLSE kas been implemented in program ESTIMATE (Halim, 1995c¢), which is used for processing the data
in section 5.0.

5.0 RESULTS

Simulation tests were conducted using the 3-D test network shown in Figure 2 (Halim, 1995¢). To study the
capability of gross error detection. 6 gross errors with the magnitudes of 100 were introduced into the randomized
data (see Table I, column 1). Four cases were examined: ordinary LSE: robustified LSE; Baarda's and; Pope's
methods

The computed solutions are displayed in Table | (column 3). Ordinary LSE is unacceptable as both global and local
tests failed. Applying robustified LSE (with option to speed up the computation), the solutions converged after 13
iterations, with the estimated variance factor of 0.73 and weighting factor ¢ of 2.3. The solution passed both global
and local tests. RLSE procedure deweights all 6 observations that contain gross errors. During RLSE, the weights
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-z 1 Itzznvations were drastically reduced to zero. Consequently, degrees of freedom for computing variance

[ 100 m

scale of natwork

Figure 2. Test network (plan)

The final residuals (with opposite sign) of the deweighted observations indicated that the estimated magnitudes of
gross error were close to the simulated gross error (columns 1 and 3 of Table 1). Hence, robustified LSE is able to
detect and locate all the gross errors in this network correctly. Also, the redundancy numbers of the deweighted
observations are close to unity (Halim, 1995b) showing the effects of gross error in the solution as being negligible.

In Pope's and Baarda's methods, the sequence of LSE with global and local tests followed by successive elimination
of suspected observations were repeated until both global and local tests passed. These methods both resulted in
variance factors of 0.89, the same as from robustified LSE. As shown in Table 1, all three methods detect the gross
errors correctly. However, all these methods lead to a less reliable network as indicated by the reliability analysis
(redundancy number, internal and external reliability).

Comparison between the solutions via robustified LSE and Pope's method also revealed that the final coordinates,
their standard errors and trace were exactly the same in both cases. Moreover, residuals and reliability measures for
non-deweighted observations are also identical. This result shows that by adopting robustified LSE, the solution
can be used directly without the need to eliminate the observations (Halim, 1995b).

6.0 CONCLUSIONS

Survey measurements are not free from the following errors: random, systematic and gross. In practice, it is assumed
that the measurements contain only random errors and are regarded as random variables. Such assumptions are
necessary because LSE is very sensitive to both systematic and gross errors.
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ordinary robustified Baarda's Pope's

LSE LSE method method
simulated ge residuals
sd 1-2 +50 mm **[-43.71] * *
sd 1-5-50 mm **[+40.52] * *
dir 1-3 -50 sec **[+44.90] * *
dir 2-1 +50 sec **[-47.21] * *
dh 2-3 +50 mm **[-54.50] * *
dh 4-6 -50 mm *¥[+48.21] * *
rank analysis ok ok ok ok
variance 10.68 0.89 0.89 0.89
factor
iteration 1 13 1 per run 1 perrun
global test fail pass pass pass
local test fail pass pass pass
redundancy 0.32-0.78 0.19-0.78 0.19-0.78 0.19-0.78
number
internal 23.33- 23.33-47.12 23.33- 23.33-
reliability 36.53 47.12 47.12
external 4.77- 4.79-71.83 4.79-71.83 4.79-71.83
reliability 36.38

Table 1. Test with 6 gross errors for network 1

(note: * indicates deleted observations (one at a time) by Pope's Tau and Baarda's methods
y Fop
*x indicates deweighted observations during robustified LSE
ge indicates gross error)

Although gross errors can be detected at pre-LSE stage via screening, some of them may still remain in the
measurements. These undetected gross errors can still be recovered during post-LSE via the analysis of residuals.

The most popular methods for gross errors detection are data snooping, tau and the Danish methods. The method
introduced in this paper, an interactive robustified LSE, is a modification of the Danish method, with the
incorporation of global and local tests, together with reliability analysis.

Robustified LSE is a practical strategy and suitable for simultaneous detection of multiple gross errors and
estimation of their magnitudes. The suspected measurements are not eliminated, however, the effects of gross errors
on the final results are insignificant as the erroneous measurements are deweighted drastically.

Practically, gross errors should be tackled prior to LSE, and all available post-LSE techniques for gross errors
detection must be employed.
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