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ABSTRACT 

Single cell mechanics is a vital part of single cell analysis. It has attracted great 

interest among scientists as cell mechanics can be linked to early diagnosis of diseases. 

To date, several great findings have been achieved in the study of single cell 

mechanics. Nevertheless, more work are required to enable the technology to be 

pushed to the frontier of single cell mechanics. Considering this objective, this work 

focuses on the technological development of two major parameters of single cell 

mechanics: Single Cell Wall (SCW) cutting operations (Phase 01) and Single Cell 

Mass (SCM) measurement (Phase 02). A saccharomyces cerevisiae yeast cell was 

used as a sample cell. In phase 01, a vibrating nanoneedle (tungsten) integrated with 

lead zirconate titanate piezoelectric actuator was used for SCW cutting operation. Two 

different frequencies of vibrating nanoneedle were used for cell wall cutting operation: 

1 Hz and 10 Hz. For a constant penetration depth of 1.2 µm, the obtained cell 

nanoneedle’s velocities were 7 µm/s and 24 µm/s. Results show that faster nanoneedle 

causes less damage to the cell surface. In phase 02, a Lab-On-Chip microfluidics 

system was used for SCM measurement. SCM result was extracted from the relation 

between drag force applied on cell and Newton’s law of motion. Drag force on the cell 

has been generated by a pressure driven syringe micropump. This approach of 

measuring SCM was calibrated using a known mass (73.5 pico gram) of polystyrene 

particle of 5.2 µm diameter. Different sizes (2-7 µm diameter) of yeast cells were 

cultured in our laboratory. Mass of 4.4 µm diameter of yeast cell was measured as 

2.12 pg. In addition, results show that single yeast cell mass increases exponentially 

with the increase of cell size. It is envisaged that this work i.e. combination of single 

cell cutting operation and single cell mass measurement system will add a significant 

contribution to the knowledge of cell mechanics and single cell analysis.    
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ABSTRAK 

Mekanik sel tunggal adalah penting dalam analisis sel tunggal. Ia telah 

menarik minat yang tinggi di kalangan ahli sains kerana mekanik sel boleh dikaitkan 

dengan diagnosis awal penyakit. Setakat ini, beberapa penemuan besar telah dicapai 

dalam mengkaji mekanik sel tunggal. Walau bagaimanapun, banyak perkara perlu 

dilakukan untuk membolehkan teknologi ini dibawa ke tahap paling tinggi dalam 

analisis mekanik sel tunggal. Bagi mencapai objektif ini, tumpuan diberikan kepada 

pembangunan teknologi bagi dua parameter utama mekanik sel iaitu operasi 

memotong Dinding Sel Tunggal (SCW) (Fasa 01) dan pengukuran Jisim Sel Tunggal 

(SCM) (Fasa 02). Sel yis saccharomyces cerevisiae digunakan sebagai sel sampel. 

Dalam fasa 01, jarum nano bergetar (tungsten) disepadukan dengan penggerak 

piezoelektrik pelambam zirkonat titanat telah digunakan untuk operasi memotong 

SCW. Dua frekuensi jarum nano bergetar yang berbeza telah digunakan untuk operasi 

pemotongan dinding sel: 1 Hz dan 10 Hz. Bagi mendapat kedalaman penembusan 

berterusan sebanyak 1.2 μm, halaju penembusan dinding sel yang didapati adalah 

sebanyak 7 μm/s dan 24 μm/s. Keputusan menunjukkan bahawa jarum nano yang lebih 

laju dapat mengurangkan kerosakan pada permukaan sel. Dalam fasa 02, satu sistem 

mikrobendalir Lab-On-Chip telah digunakan bagi pengukuran SCM. Jisim sel tunggal 

dikira melalui daya seretan yang dikenakan kepada sel yang dikaitkan dengan hukum 

gerakan Newton. Kuasa seretan pada sel telah dijanakan oleh picagari pam mikro 

dipandukan tekanan. Sistem ini dikalibrasi menggunakan jisim zarah polistirena (73.5 

pico gram) berdiameter 5.2 μm. Sel yis bagi saiz yang berbeza (2-7 μm diameter) telah 

dikultur di makmal. Jisim sel yis tunggal bagi saiz diameter 4.4 μm telah diukur 

sebagai 2.12 pg. Di samping itu, keputusan menunjukkan bahawa jisim sel yis tunggal 

mengalami peningkatan secara eksponens dengan peningkatan saiz sel. Adalah 

dijangka bahawa kerja ini iaitu gabungan pemotongan sel dan sistem pengukuran jisim 

sel tunggal akan menambah nilai yang besar terhadap bidang mekanik sel dan analisis 

sel tunggal.
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INTRODUCTION 

1.1 Background of the Research  

The fundamental structure of a living organism is cell. Millions of cells are 

combined together to develop a total structure of tissue. Therefore, single cell analysis 

plays a significant role in tissue engineering. Conventional medical science researches 

are based on a population cell analysis that are derived from an average data. However, 

the average data is not able to illustrate the basic physiological properties  of cell such 

as cell membrane stiffness, cell wall thickness at different cell growth, cell 

proliferations etc. [1]. For instance, abnormal cell growth causes cancer or tumor [2-

3] by which intracellular and extracellular mechanical properties change significantly 

[4-5]. From the biochemical experiments it might be possible to identify that the cell 

growth is abnormal, but to identify the exact changes in intracellular properties, it is 

necessary to analyze cell's mechanical property individually. This is why we are 

focusing on single cell analysis (SCA). With the revolution of micro-bio and nano-bio 

technologies, physiology of single cell is being explored day by day. Great strides 

have been taken to develop the technology to investigate the intracellular and 

extracellular properties of single cell. For example analysis of single cell inside 

environmental scanning electron microscope (ESEM) [1], [6]–[8], AFM cantilever for 

single cell strength analysis [9], nanoscale electrochemical probe for single cell 

analysis (SCA) [10], SCA through electrochemical detection [6], [10]–[15] and 

microfluidics disk for single cell viability detection [16]. In general, single cell 

analysis can be divided into four categories (Figure 1.1).  
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These are single cell’s biological analysis [17]; single cell’s chemical analysis 

[17], [18]; single cell’s electrical properties analysis [19]; single cell’s mechanical 

properties analysis [20], [21]. Among these four branches single cell, mechanical 

property (or cell mechanics) is an important branch of SCA. It elucidates the complex 

intra cellular properties of cell like cell wall strength, cell mass, cell density, cell 

adhesion force, cell stiffness etc. In this work, we are focusing on the sensor 

development for single cell wall cutting operation and single cell mass measurement.  

1.2 Applications of Cell Mechanics  

Recent development of micro electro mechanical systems (MEMS) provide an 

excellent platform to study cell mechanics, often known as lab-on-chip (LOC) 

microfluidics device [12], [15], [17]. Cell mechanics consist of (but not limited to) cell 

wall cutting operation, cell mass, density, cell stiffness, cell adhesion force and cell’s 

viscoelastic properties etc. Chronic diseases like cancer, tumour affect the intracellular   

 

 

Figure 1.1: Four major branches of single cell analysis: chemical analysis; biological 

analysis; electrical analysis and mechanical analysis.  

 



3 

 

 

 

properties of cells [26], eventually lead to change of cell mechanics [28-29]. For 

example, in a tumour infected cell, integrity of DNA faces continuous challenges and 

genomic instability occurs to the chromosome's structure [29]. Inevitably, this will 

cause severe change to DNA replication, cytoplasm density and cell volume which 

ultimately leads to the changes in single cell mass and cell wall strength. Figure 1.2 

depicts this concept. When a cell becomes infected its physiological properties change 

and propagate to others. At a certain stage, it causes disease and requires further 

treatment. In this condition, before propagating to the other cells, if it is possible to 

identify the particular infected cell based on the cell’s mechanics, then physicians will 

able to diagnose the disease in a much earlier stage. Currently, scientists are using cell 

mechanics to diagnose disease such as:   

 

 Hematologic disease like dengue, malaria diagnosis using cell mechanics [30], 

[31].  

 Cell mechanics for cancer cell separation [32].  

 Tumor cell detection using cell mechanics [33].  

 

 

 

Figure 1.2: Chronic diseases infect intracellular property and propagate to others 

cells. Ultimately, lead to the severe diseases and death.  
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1.3 Statement of the Problem  

Since decades, researcher are developing sensors or technologies to study 

single cell mechanics. Cell mechanics consist of (but not limited to) cell wall cutting 

operation, cell mass, cell density, cell stiffness, cell adhesion force, cell’s viscoelastic 

properties etc. However, in this work, we are focusing on the two major issues of cell 

mechanics; single cell cutting operation (SCW) and the single cell mass (SCM) 

measurement.  

 

a) First Issue: Single cell wall (SCW) Cutting Operation 

One of the burning questions of scientist is how strong the cell wall and how 

much force requires to perform cell wall cutting. To realize this issue several sensors 

have been developed so far. For example; diamond and glass knives were used for 

ultrathin cryosectioning of cells [35-36]. Due to the sturdy edge of diamond knife and 

high edge angle (40° to 60°), it generates a very high compression stress on the upper 

surface of cells which may damage the cell structure. Recently, our colleagues Yajing 

Shen et al. fabricated a novel nanoknife by focused ion beam (FIB) etching of a 

commercial atomic force microscopy (AFM) cantilever [36] to perform cell cutting 

inside environmental scanning electron microscope (ESEM). However, both of the 

works were limited to single cell slice generation only. The reported data is not 

adequate to explain the strength of the single cell wall. The mechanical properties of 

the cell wall are partially extracted and yet under the area of “near total darkness” [6]. 

For instance, strength of the cell wall, cell wall thickness growth pattern in different 

phases of cell growth, further more molecular stricter of single cell wall. In order to 

bring out technological advancement for cell wall studies, this study focuses on single 

cell wall cutting operations also known as cell surgery specifically. 

  

b) Second Issue : Single cell mass (SCM) Measurement  

Another important parameter of cell mechanics is cell mass. Cell mass depends 

on the synthesis of proteins, DNA replication, cell wall stiffness, cell cytoplasm 

density, cell growth, ribosome and other analogous of organisms [37]. As a result, it 

becomes a great interest of scientists to characterize single cell mass. Lab-on-chip 
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microfluidics system provides an excellent platform to measure single cell mass. For 

example: Suspended microchannel resonator (SMR) for dry cell mass measurement, 

living cantilever arrays (LCA) for live cell mass measurement, Pedestal mass 

measurement system (PMMS) for adherent cell mass measurement. However, current 

technological advancements of cell mass measurement require complex fabrication 

procedures and the tedious experimental steps [38]. But this work focuses on a simple 

microfluidic system development where single cell mass can be measured from single 

cell flow and drag force exerted on the cell surface to generate the flow. It is envisaged 

that, this approach can be useful for rapid measurement of single cell mass and it may 

lead us to the solution of further questions on cell mechanics.  

 

Moreover, by consolidating these two approaches of cell mechanics, intrinsic 

property of single cell will be elucidated. Perhaps, it may provide new tools for disease 

diagnosis through the variation of single cell’s intrinsic property of identical cells at 

different health conditions.   

1.4 Objectives of the Research  

The objective of the research is to resolve the two aforementioned major issues 

of cell mechanics. The first objective of this work is to propose a novel method for 

single cell wall (SCW) cutting operation, which is a piezoelectric-actuated vibrating 

rigid nanoneedle for SCW cutting operation. The second objective of this work is to 

develop lab-on-chip microfluidics system for single cell mass (SCM) measurement, 

where rapid measurement of SCM can be performed using drag force inside 

microfluidic channel.  
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1.5  Scopes of the Research 

1) Single cell wall cutting operations was carried out using finite element software 

ABAQUS 6.12 CAE/CEL and the sensor has been calibrated experimentally.  

2) Piezoelectric actuator was used to vibrate the nanoneedle for single cell wall 

cutting. Inverse piezoelectric effect was used to actuate the nanoneedle.   

3)  Polydimethylsiloxane (PDMS) material has been used to fabricate the LOC 

microfluidics system. PDMS is a transparent, biocompatible material and sample 

can be observed directly under inverted microscopy.  

4) Saccharomyces cerevisiae type of yeast cell has been used as a sample cell for cell 

wall cutting operations and cell mass measurement.  

1.6 Flow of the Research  

Research activities have been carried out in two phases. The first phase (Phase 

01) focuses on the first issue i.e. single cell wall (SCW) cutting operation and the 

second phase (Phase 02) focuses on the second issue i.e. single cell mass (SCM) 

measurement. Figure 1.3 illustrates the flow of the research activities. Each phase of 

the work started with literature review followed by proposed idea, design and 

fabrication, calibrations and results analysis. Both SCW cutting operations and SCW 

measurement under the same umbrella of single cell mechanics. This thesis is the 

combination of these aforementioned phases reflecting single cell mechanics in terms 

of SCW cutting operations and SCM measurement method.  
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1.7 Organization of the Thesis  

This thesis has been divided into six chapters. This chapter highlights the 

background of single cell analysis, importance of cell mechanics, problem statement 

of the research, objectives and scopes of the research and also brief summary of the 

research flow. The research objectives has been divided in two phases; phase 01: 

Single Cell Wall (SCW) cutting operations, phase 02: Single Cell Mass (SCM) 

measurement.  

 

Chapter 2 presents literature review of cell mechanics, cell surgery and single 

cell mass measurement. Summary of the works were n presented in table and tree 

diagram.  

 

 

 

Figure 1.3: Flow of the research work. Entire work is divided into two phases. Phase 

01 describes SCW cutting operations and the Phase 02 describes SCM measurement.  
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Chapter 3 describes the methodology of the two phases of works. First section 

illustrated the proposed method for single cell cutting operations. It also described the 

assembling of the nanoneedle with the PZT actuator. FE model of nanoneedle and 

PZT also been showed in this section. In the second section, design of the proposed 

microfluidics chip for single cell mass measurement was presented. Theory behind 

SCM using drag force and Newton law of motion was also been presented in this 

section.  

 

Chapter 4 illustrates the calibration of the devices. Vibration of the nanoneedle 

was controlled by applying voltage to the PZT actuator. Displacement of 4.5 µm was 

obtained from an applied voltage of 150 V. Calibration of the LOC microfluidics 

system was also been presented in this chapter. Microfluidics system was calibrated 

using a known mass of polystyrene microbeads.   

 

Chapter 5 presents the results of phase 01 and phase 02 i.e. single cell wall 

cutting operations and single cell mass measurement respectively. Saccharomyces 

cerevisiae yeast cell was used as a sample cell. Effect of the nanoneedle’s vibration 

frequency to the cell wall cutting; effect of the nanoneedle tip edge angle and the effect 

flat tip cylindrical nanoneedle were discussed in the first section of this chapter. While 

at the second section, single yeast cell mass measurement was reported. Different sizes 

of yeast cells (2.5 µm, 3.5 µm, 5.5 µm) were cultured to measure single cell mass.  

 

Finally, Chapter 6 presents the conclusions of the entire work with a brief 

directions of the future works.  

 

 

 

 

 

 



78 

 

 

 

REFERENCES   

[1] M. R. Ahmad, M. Nakajima, S. Kojima, M. Homma, and T. Fukuda, 

“Nanoindentation methods to measure viscoelastic properties of single cells 

using sharp, flat, and buckling tips inside ESEM,” IEEE Trans. 

Nanobioscience, vol. 9, no. 1, pp. 12–23, Mar. 2010. 

[2] H. Zheng, L. Chang, N. Patel, J. Yang, L. Lowe, D. K. Burns, and Y. Zhu, 

“Induction of abnormal proliferation by nonmyelinating schwann cells triggers 

neurofibroma formation,” Cancer Cell, vol. 13, no. 2, pp. 117–28, Feb. 2008. 

[3] M. B. Beasley, “Pulmonary neuroendocrine tumours and proliferations: a 

review and update,” Diagnostic Histopathol., vol. 14, no. 10, pp. 465–473, Oct. 

2008. 

[4] R. K. Assoian and E. A. Klein, “Growth control by intracellular tension and 

extracellular stiffness,” Trends Cell Biol., vol. 18, no. 7, pp. 347–52, Jul. 2008. 

[5] M. L. Taddei, E. Giannoni, G. Comito, and P. Chiarugi, “Microenvironment 

and tumor cell plasticity: An easy way out,” Cancer Lett., Jan. 2013. 

[6] M. R. Ahmad, M. Nakajima, S. Kojima, M. Homma, and T. Fukuda, “The 

effects of cell sizes, environmental conditions, and growth phases on the 

strength of individual W303 yeast cells inside ESEM,” IEEE Trans. 

Nanobioscience, vol. 7, no. 3, pp. 185–93, Sep. 2008. 

[7] M. R. Ahmad, M. Nakajima, S. Kojima, M. Homma, and T. Fukuda, “Buckling 

nanoneedle for characterizing single cells mechanics inside environmental 

SEM,” IEEE Trans. Nanotechnol., vol. 10, no. 2, pp. 226–236, 2011. 

[8] M. R. Ahmad, M. Nakajima, S. Kojima, M. Homma, and T. Fukuda, “In situ 

single cell mechanics characterization of yeast cells using nanoneedles inside 

environmental SEM,” IEEE Trans. Nanotechnol., vol. 7, no. 5, pp. 607–616, 

2008. 

[9] I. Obataya, C. Nakamura, S. Han, N. Nakamura, and J. Miyake, “Nanoscale 

operation of a living cell using an atomic force microscope with a nanoneedle,” 

Nano Lett., vol. 5, no. 1, pp. 27–30, Jan. 2005. 



79 

 

 

 

[10] R. J. Fasching, S. J. Bai, T. Fabian, and F. B. Prinz, “Nanoscale electrochemical 

probes for single cell analysis,” Microelectron. Eng., vol. 83, no. 4–9, pp. 1638–

1641, Apr. 2006. 

[11] T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. 

Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single 

nanoparticles in fluid,” Nature, vol. 446, no. 7139, pp. 1066–1069, Apr. 2007. 

[12] S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis 

of cells from cancer patients,” Nat. Nanotechnol., vol. 2, no. 12, pp. 780–783, 

Dec. 2007. 

[13] M. Godin, A. K. Bryan, T. P. Burg, K. Babcock, and S. R. Manalis, “Measuring 

the mass, density, and size of particles and cells using a suspended 

microchannel resonator,” Appl. Phys. Lett., vol. 91, no. 12, pp. 123121–

1231212, 2007. 

[14] K. Park, J. Jang, D. Irimia, J. Sturgis, and J. Lee, “‘Living cantilever arrays’ for 

characterization of mass of single live cells in fluids,” Lab Chip, vol. 8, pp. 

1034–1041, 2008. 

[15] F. Xia, W. Jin, X. Yin, and Z. Fang, “Single-cell analysis by electrochemical 

detection with a microfluidic device,” J. Chromatogr. A, vol. 1063, no. 1–2, pp. 

227–233, Jan. 2005. 

[16] I. Kubo, S. Furutani, and K. Matoba, “Use of a novel microfluidic disk in the 

analysis of single-cell viability and the application to Jurkat cells,” J. Biosci. 

Bioeng., vol. 112, no. 1, pp. 98–101, Jul. 2011. 

[17] A. Schmid, H. Kortmann, P. S. Dittrich, and L. M. Blank, “Chemical and 

biological single cell analysis,” Curr. Opin. Biotechnol., vol. 21, no. 1, pp. 12–

20, Mar. 2010. 

[18] D. Di Carlo, N. Aghdam, and L. P. Lee, “Single-cell enzyme concentrations, 

kinetics, and inhibition analysis using high-density hydrodynamic cell isolation 

arrays,” Anal. Chem., vol. 78, no. 14, pp. 4925–30, Jul. 2006. 

[19] N. Bao, J. Wang, and C. Lu, “Recent advances in electric analysis of cells in 

microfluidic systems,” Anal. Bioanal. Chem., vol. 391, no. 3, pp. 933–42, Jun. 

2008. 

[20] A. Smith and Z. Zhang, “The mechanical properties of Saccharomyces 

cerevisiae,” Proc. Natl. Acad. Sci., vol. 97, no. 18, pp. 2–5, 2000. 

[21] S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Biomater., vol. 

3, no. 4, pp. 413–38, Jul. 2007. 

[22] A. K. Bryan, A. Goranov, A. Amon, and S. R. Manalis, “Measurement of mass, 

density, and volume during the cell cycle of yeast,” Proc. Natl. Acad. Sci., vol. 

107, no. 3, pp. 999–1004, Jan. 2010. 



80 

 

 

 

[23] F. S. O. Fritzsch, C. Dusny, O. Frick, and A. Schmid, “Single-cell analysis in 

biotechnology, systems biology, and biocatalysis,” Annu. Rev. Chem. Biomol. 

Eng., vol. 3, pp. 129–55, Jan. 2012. 

[24] J. Lee, R. Chunara, W. Shen, K. Payer, K. Babcock, T. P. Burg, and S. R. 

Manalis, “Suspended microchannel resonators with piezoresistive sensors,” 

Lab Chip, vol. 11, no. 4, pp. 645–51, Feb. 2011. 

[25] K. Park, L. J. Millet, N. Kim, H. Li, X. Jin, G. Popescu, N. R. Aluru, K. J. Hsia, 

and R. Bashir, “Measurement of adherent cell mass and growth,” Proc. Natl. 

Acad. Sci., vol. 107, no. 48, pp. 20691–96, Nov. 2010. 

[26] S. De Flora, A. Izzotti, K. Randerath, E. Randerath, H. Bartsch, J. Nair, R. 

Balansky, F. Schooten, P. Degan, G. Fronza, D. Walsh, and J. Lewtas, “DNA 

adducts and chronic degenerative diseases. Pathogenetic relevance and 

implications in preventive medicine,” Mutat. Res. Genet. Toxicol., vol. 366, no. 

3, pp. 197–238, Dec. 1996. 

[27] J. M. Mitchison, “Single cell studies of the cell cycle and some models,” Theor. 

Biol. Med. Model., vol. 2, pp. 4–9, Jan. 2005. 

[28] S. Cooper, “Distinguishing between linear and exponential cell growth during 

the division cycle: single-cell studies, cell-culture studies, and the object of cell-

cycle research,” Theor. Biol. Med. Model., vol. 3, pp. 10–25, Jan. 2006. 

[29] C. J. Lord and A. Ashworth, “The DNA damage response and cancer therapy,” 

Nature, vol. 481, no. 7381, pp. 287–94, Jan. 2012. 

[30] M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell 

deformed by optical tweezers,” J. Mech. Phys. Solids, vol. 51, no. 11–12, pp. 

2259–2280, Nov. 2003. 

[31] M. J. Rosenbluth, W. a Lam, and D. a Fletcher, “Analyzing cell mechanics in 

hematologic diseases with microfluidic biophysical flow cytometry,” Lab Chip, 

vol. 8, no. 7, pp. 1062–70, Jul. 2008. 

[32] X. Ding, Z. Peng, S.-C. S. Lin, M. Geri, S. Li, P. Li, Y. Chen, M. Dao, S. Suresh, 

and T. J. Huang, “Cell separation using tilted-angle standing surface acoustic 

waves,” Proc. Natl. Acad. Sci., pp. 1–6, Aug. 2014. 

[33] S. Kumar and V. Weaver, “Mechanics, malignancy, and metastasis: the force 

journey of a tumor cell,” Cancer Metastasis Rev., vol. 28, pp. 113–127, 2009. 

[34] C. C. Chang, P. H. Chen, H. L. Chu, T. C. Lee, C. C. Chou, J. I. Chao, C. Y. 

Su, J. S. Chen, J. S. Tsai, C. M. Tsai, Y. P. Ho, K. W. Sun, C. L. Cheng, and F. 

R. Chen, “Laser induced popcornlike conformational transition of 

nanodiamond as a nanoknife,” Appl. Phys. Lett., vol. 93, no. 3, p. 33905, 2008. 

[35] K. Amako, A. Takade, A. Umeda, and M. Yoshida, “Imaging of the surface 

structures of epon thin sections created with a glass knife and a diamond knife 



81 

 

 

 

by the atomic force microscope,” J. Electron Microsc. (Tokyo)., vol. 42, no. 2, 

pp. 121–123, Apr. 1993. 

[36] Y. Shen, M. Nakajima, Z. Yang, S. Kojima, M. Homma, and T. Fukuda, 

“Design and characterization of nanoknife with buffering beam for in situ 

single-cell cutting,” Nanotechnology, vol. 22, no. 30, p. 305701, Jul. 2011. 

[37] M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S. G. Prasanth, 

and G. Popescu, “Optical measurement of cycle-dependent cell growth,” Proc. 

Natl. Acad. Sci., vol. 108, no. 32, pp. 13124–9, Aug. 2011. 

[38] M. Rahman and M. Ahmad, “Lab-on-Chip Microfluidics System for Single 

Cell Mass Measurement: A Comprehensive Review,” J. Teknol., vol. 69, no. 8, 

pp. 85–93, 2014. 

[39] C. Yi, G. M. Saidel, and M. Gratzl, “Single cell model for simultaneous drug 

delivery and efflux.,” Ann. Biomed. Eng., vol. 27, no. 2, pp. 208–18, 1999. 

[40] C. Rotsch, F. Braet, E. Wisse, and M. Radmacher, “AFM imaging and elasticity 

measurements on living rat liver macrophages,” Cell Biol. Int., vol. 21, pp. 685–

696, 1997. 

[41] M. Radmacher, “Measuring the elastic properties of biological samples with the 

AFM,” IEEE Eng. Med. Biol. Mag., vol. 16, pp. 47–57, 1997. 

[42] J. D. Stenson, P. Hartley, C. Wang, and C. R. Thomas, “Determining the 

mechanical properties of yeast cell walls,” Biotechnol. Prog., vol. 27, no. 2, pp. 

505–12, 2011. 

[43] B. Balasundaram and A. Pandit, “Selective release of invertase by 

hydrodynamic cavitation,” Biochem. Eng. J., vol. 8, pp. 251–256, 2001. 

[44] A. Kleinig and A. Middelberg, “On the mechanism of microbial cell disruption 

in high-pressure homogenisation,” Chem. Eng. Sci., vol. 53, no. 5, pp. 891–898, 

1998. 

[45] T. J. Lardner and P. Pujara, “Compression of spherical cells,” in Mechanics 

Today, Vol. 5, S. N. Nasser, Ed. New York NY: Pergamon Press, 2008, pp. 

161–176. 

[46] M. R. Ahmad, M. Nakajima, S. Kojima, M. Homma, and T. Fukuda, “The 

effects of cell sizes, environmental conditions, and growth phases on the 

strength of individual W303 yeast cells inside ESEM,” IEEE Trans. 

Nanobioscience, vol. 7, no. 3, pp. 185–93, Sep. 2008. 

[47] M. Nakajima, F. Arai, and T. Fukuda, “In Situ Measurement of Young’s 

Modulus of Carbon Nanotubes Inside a TEM Through a Hybrid Nanorobotic 

Manipulation System,” IEEE Trans. Nanotechnol., vol. 5, no. 3, pp. 243–248, 

2006. 



82 

 

 

 

[48] P. Chiou, T. Wu, and M. Teitell, “Photothermal nanoblade for patterned cell 

membrane cutting Ting-Hsiang,” Opt. Express, vol. 18, no. 22, pp. 23153–60, 

Oct. 2010. 

[49] Y. Shen, M. Nakajima, M. R. Ahmad, S. Kojima, M. Homma, and T. Fukuda, 

“Effect of ambient humidity on the strength of the adhesion force of single yeast 

cell inside environmental-SEM.,” Ultramicroscopy, vol. 111, no. 8, pp. 1176–

83, Jul. 2011. 

[50] J. Lee, A. K. Bryan, and S. R. Manalis, “High precision particle mass sensing 

using microchannel resonators in the second vibration mode,” Rev. Sci. 

Instrum., vol. 82, no. 2, pp. 02370401–04, Mar. 2011. 

[51] E. J. Lanni, S. S. Rubakhin, and J. V Sweedler, “Mass spectrometry imaging 

and profiling of single cells,” J. Proteomics, vol. 75, no. 16, pp. 5036–51, Aug. 

2012. 

[52] T. P. Burg and S. R. Manalis, “Suspended microchannel resonators for 

biomolecular detection,” Appl. Phys. Lett., vol. 83, no. 13, pp. 2698–2700, 

2003. 

[53] D. Sarid, Scanning force microscopy : with applications to electric, magnetic, 

and atomic forces. Oxford University Press, 1994. 

[54] J. Lee, W. Shen, K. Payer, T. P. Burg, and S. R. Manalis, “Toward attogram 

mass measurements in solution with suspended nanochannel resonators,” Nano 

Lett., vol. 10, no. 7, pp. 2537–42, Jul. 2010. 

[55] J. Bühler, F. P. Steiner, and H. Baltes, “Silicon dioxide sacrificial layer etching 

in surface micromachining,” J. Micromechanics Microengineering, vol. 7, no. 

1, pp. R1–R13, 1997. 

[56] J. W. Berenschot, N. R. Tas, T. S. J. Lammerink, M. Elwenspoek, and A. Berg, 

“Advanced sacrificial poly-Si technology for fluidic systems,” J. 

Micromechanics Microengineering, vol. 12, no. 5, pp. 621–624, 2002. 

[57] Y. Weng, F. F. Delgado, S. Son, T. P. Burg, S. C. Wasserman, and S. R. 

Manalis, “Mass sensors with mechanical traps for weighing single cells in 

different fluids,” Lab Chip, vol. 11, no. 24, pp. 4174–80, Dec. 2011. 

[58] E. B. Cummings and A. K. Singh, “Dielectrophoresis in microchips containing 

arrays of insulating posts: theoretical and experimental results,” Anal. Chem., 

vol. 75, no. 18, pp. 4724–31, Sep. 2003. 

[59] J. E. Molloy and M. J. Padgett, “Lights, action : optical tweezers,” Contemp. 

Phys., vol. 43, no. 4, pp. 241–258, 2002. 

[60] M. Evander, L. Johansson, T. Lilliehorn, J. Piskur, M. Lindvall, S. Johansson, 

M. Almqvist, T. Laurell, and J. Nilsson, “Noninvasive acoustic cell trapping in 



83 

 

 

 

a microfluidic perfusion system for online bioassays,” Anal. Chem., vol. 79, no. 

7, pp. 2984–91, Apr. 2007. 

[61] J. L. Arlett and M. L. Roukes, “Ultimate and practical limits of fluid-based mass 

detection with suspended microchannel resonators,” J. Appl. Phys., vol. 108, 

no. 8, pp. 084701–11, 2010. 

[62] J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, “Review of cell and 

particle trapping in microfluidic systems,” Anal. Chim. Acta, vol. 649, no. 2, 

pp. 141–57, Sep. 2009. 

[63] F. Chowdhury, S. Na, D. Li, Y. C. Poh, T. S. Tanaka, F. Wang, and N. Wang, 

“Material properties of the cell dictate stress-induced spreading and 

differentiation in embryonic stem cells,” Nat. Mater., vol. 9, no. 1, pp. 82–88, 

Jan. 2010. 

[64] A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix elasticity 

directs stem cell lineage specification,” Cell, vol. 126, no. 4, pp. 677–89, Aug. 

2006. 

[65] A. Gupta, D. Akin, and R. Bashir, “Single virus particle mass detection using 

microresonators with nanoscale thickness,” Appl. Phys. Lett., vol. 84, no. 11, 

pp. 1976–1978, 2004. 

[66] M. S. Pommer, Y. Zhang, N. Keerthi, D. Chen, J. a Thomson, C. D. Meinhart, 

and H. T. Soh, “Dielectrophoretic separation of platelets from diluted whole 

blood in microfluidic channels,” Electrophoresis, vol. 29, no. 6, pp. 1213–8, 

Mar. 2008. 

[67] J. E. Sader, J. W. M. Chon, and P. Mulvaney, “Calibration of rectangular atomic 

force microscope cantilevers,” Rev. Sci. Instrum., vol. 70, no. 10, pp. 3967–

3969, 1999. 

[68] S. Dohn, R. Sandberg, W. Svendsen, and A. Boisen, “Enhanced functionality 

of cantilever based mass sensors using higher modes,” Appl. Phys. Lett., vol. 

86, no. 23, pp. 233501–03, 2005. 

[69] D. Di Carlo, L. Y. Wu, and L. P. Lee, “Dynamic single cell culture array,” Lab 

Chip, vol. 6, no. 11, pp. 1445–9, Nov. 2006. 

[70] J. M. Mitchison, “Growth during the cell cycle,” Int. Rev. Cytol., vol. 226, pp. 

165–258, 2003. 

[71] C. H. Cheng and S. L. Tu, “Fabrication of a novel piezoelectric actuator with 

high load-bearing capability,” Sensors Actuators A Phys., vol. 141, no. 1, pp. 

160–165, Jan. 2008. 

[72] P. Ronkanen, P. Kallio, M. Vilkko, H. N. Koivo, and S. Member, 

“Displacement Control of Piezoelectric Actuators Using Current and Voltage,” 

IEEE Trans. Mechatronics, vol. 16, no. 1, pp. 160–166, 2011. 



84 

 

 

 

[73] M. H. Rahman, A. H. Sulaiman, M. R. Ahmad, and T. Fukuda, “Finite element 

analysis of single cell wall cutting by piezoelectric-actuated vibrating rigid 

nanoneedle,” IEEE Trans. Nanotechnol., vol. 12, no. 6, pp. 1158–1168, 2013. 

[74] J. A. Schnabel, C. Tanner, A. D. Castellano-Smith, A. Degenhard, M. O. Leach, 

D. R. Hose, D. L. G. Hill, and D. J. Hawkes, “Validation of nonrigid image 

registration using finite-element methods: application to breast MR images,” 

IEEE Trans. Med. Imaging, vol. 22, no. 2, pp. 238–47, Feb. 2003. 

[75] J. S. Rathore, R. Majumdar, and N. N. Sharma, “Planar Wave Propagation 

Through a Tapered Flagellated Nanoswimmer,” IEEE Trans. Nanotechnol., 

vol. 11, no. 6, pp. 1117–1121, Nov. 2012. 

[76] A. Salmanogli and A. Rostami, “Modeling and Improvement of Breast Cancer 

Site Temperature Profile by Implantation of Onion-Like in Tumor Site,” IEEE 

Trans. Nanotechnol., vol. 11, no. 6, pp. 1183–1191, 2012. 

[77] G. P. Škoro, J. R. J. Bennett, T. R. Edgecock, S. A. Gray, A. J. McFarland, C. 

N. Booth, K. J. Rodgers, and J. J. Back, “Dynamic Young’s moduli of tungsten 

and tantalum at high temperature and stress,” J. Nucl. Mater., vol. 409, no. 1, 

pp. 40–46, Feb. 2011. 

[78] A. Lazarus, O. Thomas, and J. F. Deü, “Finite element reduced order models 

for nonlinear vibrations of piezoelectric layered beams with applications to 

NEMS,” Finite Elem. Anal. Des., vol. 49, no. 1, pp. 35–51, Feb. 2012. 

[79] T. Kanda, M. K. Kurosawa, and T. Higuchi, “Sensitivity of a miniaturized touch 

probe sensor using PZT thin film vibrator,” Ultrasonics, vol. 40, no. 1–8, pp. 

61–5, May 2002. 

[80] P. R. Nott and J. F. Brady, “Pressure-driven flow of suspensions: simulation 

and theory,” J. Fluid Mech., vol. 275, no. -1, p. 157, Apr. 2006. 

[81] A. M. Jones and J. G. Knudsen, “Drag coefficients at low Reynolds numbers 

for flow past immersed bodies,” AIChE J., vol. 7, no. 1, pp. 20–25, Mar. 1961. 

[82] M. J. Fuerstman, A. Lai, M. E. Thurlow, S. S. Shevkoplyas, H. a Stone, and G. 

M. Whitesides, “The pressure drop along rectangular microchannels containing 

bubbles.,” Lab Chip, vol. 7, no. 11, pp. 1479–89, Nov. 2007. 

[83] S. M. Kim, S. H. Lee, and K. Y. Suh, “Cell research with physically modified 

microfluidic channels: a review,” Lab Chip, vol. 8, no. 7, pp. 1015–23, Jul. 

2008. 

[84] A. E. Kamholz and P. Yager, “Theoretical analysis of molecular diffusion in 

pressure-driven laminar flow in microfluidic channels,” Biophys. J., vol. 80, no. 

1, pp. 155–60, Jan. 2001. 

[85] “An American National Standard IEEE Standard on Piezoelectricity.” 1988. 



85 

 

 

 

[86] Z. Wang, W. Zhu, C. Zhao, and X. Yao, “Deflection Characteristics of a 

Trapezoidal Multilayer In-Plane Bending Piezoelectric Actuator,” vol. 48, no. 

4, pp. 1103–1110, 2001. 

[87] J. L. Arlett and M. L. Roukes, “Ultimate and practical limits of fluid-based mass 

detection with suspended microchannel resonators,” J. Appl. Phys., vol. 108, 

no. 8, p. 084701, 2010. 

[88] Z. Hensley and D. Papavassiliou, “Drag coefficient correction for spherical and 

non-spherical particles suspended in square microducts,” Ind. Eng. Chem. Res., 

vol. 53, no. 25, pp. 10465–10474, 2014. 

[89] A. Kubik and L. Kleiser, “Forces acting on particles in separated wall‐bounded 

shear flow,” PAMM, vol. 513, pp. 512–513, 2004. 

[90] L. Lehle, S. Strahl, and W. Tanner, “Protein glycosylation, conserved from 

yeast to man: a model organism helps elucidate congenital human diseases,” 

Angew. Chem. Int. Ed. Engl., vol. 45, no. 41, pp. 6802–18, Oct. 2006. 

[91] T. Svaldo Lanero, O. Cavalleri, S. Krol, R. Rolandi, and A. Gliozzi, 

“Mechanical properties of single living cells encapsulated in polyelectrolyte 

matrixes,” J. Biotechnol., vol. 124, no. 4, pp. 723–31, Aug. 2006. 

[92] A. H. Sulaiman, “Integrated Dual Nanoprobe-Microfluidics System for Single 

Cell Electrcial Property Characterizations,” Universiti Teknologi Malaysia, 

2014. 

[93] Y. Wu, D. Sun, and W. Huang, “Mechanical force characterization in 

manipulating live cells with optical tweezers,” J. Biomech., vol. 44, no. 4, pp. 

741–746, 2011. 

[94] A. Bryan and A. Goranov, “Measurement of mass, density, and volume during 

the cell cycle of yeast,” Proc. Natl. Acad. Sci. U. S. A., vol. 107, no. 3, pp. 999–

1004, 2010. 

[95] J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics. Prentice-

Hall:Englewood Cliffs, NJ, 1965.  

 




