PRINTED MONOPOLE ANTENNA FOR WIRELESS SENSOR NETWORK

UMAIMAH JAMALUDIN

UNIVERSITI TEKNOLOGI MALAYSIA

PRINTED MONOPOLE ANTENNA FOR WIRELESS SENSOR NETWORK

UMAIMAH JAMALUDIN

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Communication Engineering)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > MARCH 2014

То 10 My dearest husband and family

ACKNOWLEDGEMENT

In the name of ALLAH, the Most Gracious and Most Merciful.

First of all, I would like to express my highest gratitude and thank you to my supervisor, Prof. Dr. Mazlina Esa for valuable support, comments, advice and guidance throughout the duration of my project.

Thank you very much to Pn. Azlina Lazim, as her in dedication, extending a helping hand helping me towards the finishing of my dissertation. Thank you very much also to my lecturers, colleagues, and friends in the Faculty of Electrical Engineering for their help.

Finally, I would like to say thank you to my dearest husband and my family for their moral support.

ABSTRACT

Wireless sensor network (WSN) are networks that consist of spatially distribute device using sensors to monitor physiological conditions, agricultural environment and disaster rescue. One of the important components in WSN communication is antenna. However, WSN as an individual node faced a lot of constraints in terms of limited processing space, storage capacity and communication bandwidth. This is because; it has to be low in energy source. Thus compactness and small design are crucial for WSN antenna. The focus of this research is to design WSN antenna with reduced size. Based on modification from several research papers, three monopole antenna configurations are proposed C-shaped monopole antenna, loop monopole antenna and S-shaped monopole antenna. Parametric investigation is then carried out to achieve size reduction as well as desired frequency of operation of 2.45 GHz. This proposed design is then simulated and fabricated to obtain the properties of the antenna. C-shaped monopole and loop monopole antenna successfully achieved the desired frequency and size miniaturization and can be used for WSN application.

ABSTRAK

Rangkaian penderia tanpa wayar (WSN) adalah rangkaian yang merangkumi sekumpulan penderia yang diletakkan berasingan dalam jarak tertentu untuk mengawasi dan mengumpul data. Teknologi ini boleh diaplikasikan untuk pelbagai bidang contohnya dalam bidang pertanian untuk mengawasi keadaan tanah dengan mengumpul data mengenai suhu, kelembapan, dan komposisi kimia. Dalam bidang komunikasi, antenna memainkan peranan yang penting. Objektif penyelidikan ini ialah untuk mereka bentuk antenna dengan pengurangan saiz bagi aplikasi WSN. Tiga rekabentuk dicadangkan iaitu gelung ekakutub, bentuk C-ekautub dan bentuk Sekakutub. Kesemua antenna ini disimulasi dan perubahan panjang antenna diubah untuk mencapai frekuensi 2.45 GHz dan pengurangann saiz. Prestasi antenna dibandingkan. Didapati antenna ekakutub dan C-ekakutub adalah mencapai prestasi yang memnuhi kehendak spesifikasi.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	Х
	LIST OF FIGURES	xi
	LIST OF ABBREVIATIONS	xiv
	LIST OF SYMBOLS	XV
	LIST OF APPENDICES	xviii
1	INTRODUCTION	1
	1.1 Background of study	1
	1.2 Problem Statement	2
	1.3 Objective	2
	1.4 Scope of Work	3
	1.5 Thesis Outline	4
2	LITERATURE REVIEW	7
	2.1. Wireless Sensor Networks (WSN)	7

2.2.	Basic Antenna Theory	9
2.3.	Monopole Antenna	11
2.4.	Review of Printed Monopole Antenna	12
2.5.	Review of WSN and 2.4 GHz Antenna	13
METI	HODOLOGY	28
3.1.	Overview	28
3.2.	Design Methodology	28
3.3.	Antenna Design	31
3.4.	Fabrication	34
3.5.	Measurement	36
RESU	JLT AND ANALYSIS	38
4.1	1. Simulated Results	38
	4.1.1. C-Shaped Monopole Antenna	41
	4.1.1.1. Return Loss	44
	4.1.1.2. Radiation Pattern	48
	4.1.1.3. Summary	49
	4.1.2. Loop Monopole Antenna	49
	4.1.2.1. Return Loss	52
	4.1.2.1.1. Radiation Pattern	54
	4.1.2.1.2. Summary	57
	4.1.3. S-shaped Monopole Antenna	58
	4.1.3.1. Return Loss	60
	4.1.3.2. Radiation Pattern	62
	4.1.3.3. Summary	64
	4.1.4. Overall Summary	65
4.2	2. Experimental Result	66
	4.2.1. Return Loss Response	66

4.2.1.1.	C-shape monopole antenna (CMB4)	66
4.2.1.2.	Loop monopole antenna (LM4)	67
4.2.2. Radia	ation Pattern	68
4.2.2.1.	C-Shape monopole antenna (CMB4)	69
4.2.2.2.	Loop monopole antenna (LM4)	70
5 CONCLUSION AN	ND FUTURE WORK	71
5.1. Conclusion		71
5.2. Future Work	X	72
REFERENCES		73-74
APENDIX A		75-80

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Typical performance of the W3000 antenna	26
4.1	Dimensions of C-shaped monopole antenna design	39
4.2	Summary of C-shape monopole with S1 variation antenna properties	48
4.3	Summary of C-shape monopole antenna with L1, L2 variation properties	49
4.4	Dimension of LM	50
4.5	Summary of loop monopole antenna properties	57
4.6	Dimension of SM	58
4.7	Summary of S shape monopole antenna properties.	64
4.8	Summary of three antenna configurations properties	65

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	WSN Data Acquisition Network and Data Distribution Network	5
2.2	Wireless Sensor Nodes	5
2.3	Radiation pattern of a directional antenna	8
2.4	Compact multiband printed antenna and its dimensions	12
2.5	Frequency behavior of the simulated and measured S11 parameter of the proposed antenna	13
2.6	Simulated radiation pattern in E-plane and H-plane for proposed antenna frequency	13
2.7	Configuration of CPW-fed broadband antenna with improved ground plane structure	14
2.8	Result of CPW fed	14
2.9	Mickey mouse shape monopole antenna	15
2.10	Three different antenna design for comparison	16
2.11	Simulated S11 for three antenna design	16
2.12	Simulated and measured radiation pattern of compact mickey mouse shaped antenna	16
2.13	Configuration and photograph of the coplanar waveguide tri-band monopole antenna	17
2.14	Simulated result of three antennas	17
2.15	Radiation pattern of coplanar waveguide tri-band monopole antenna	18
2.16	Methodology in designing WSN antenna for mass	19

production

2.17	Half-wave dipole antenna embedded in PCB	19
2.18	Compact antenna structure for WSN server node	20
2.19	Configuration of C-shaped monopole antenna with partial ground plane	21
2.20	Return loss response of C-shaped monopole antenna	21
2.21	Radiation pattern of C-shaped monopole antenna	21
2.22	C-shaped with slotted monopole antenna configuration	22
2.23	E- and H-plane radiation pattern of C shaped antenna	22
2.24	Reflection coefficient and mutual coupling of the designated antenna	23
2.25	Configuration of S-shaped monopole antenna	23
2.26	Simulated and measured return loss	24
2.27	Radiation pattern at 2.4 GHz	24
2.28	W3000 ceramic monopole antenna	25
2.29	Radiation pattern of W3000 ceramic monopole antenna	26
2.30	S11 performance of W3000 antenna	27
3.1	Flow chart of design methodology	29
3.2	Initial layout of C-shaped monopole antenna (CM) with partial ground plane	31
3.3	Initial layout if loop monopole antenna (LM) with partial ground plane	31
3.4	Initial layout of S-shaped monopole antenna (SM) with partial ground plane	32
3.5	Laminating Process	34
3.6	Printed board is soaked with water	34
3.7	Wet etching process	34
3.8	Fabricated antennas	35
3.9	S11 measurement	36
3.10	Radiation pattern measurement	36

4.2	Simulated return loss response of CM	37
4.3	Radiation pattern of CM	39
4.4	Simulated Return Loss of CM, CMA1, CMA2, CMA3 and CMA4	43
4.5	Simulated Return Loss of CM, CMB1, CMB2, CMB3 and CMB4.	43
4.6	Radiation pattern of CMA1	45
4.7	Radiation pattern of CMA2	45
4.8	Radiation Pattern of CMA3	45
4.9	Radiation Pattern of CMA4	46
4.10	Radiation Pattern of CMB1	46
4.11	Radiation Pattern of CMB2	46
4.12	Radiation Pattern of CMB3	47
4.13	Radiation Pattern of CMB4	47
4.14	Loop Monopole (LM) antenna design	50
4.15	Simulated return loss response of LM	51
4.16	Radiation pattern of LM	51
4.17	Simulated Return Loss Response of Loop Monopole Antenna	54
4.18	Radiation pattern of LM1	55
4.19	Radiation Pattern on LM2	55
4.20	Radiation Pattern of LM3	56
4.21	Radiation Pattern of LM4	56
4.22	Radiation Pattern of LM5	56
4.23	S-Monopole Antenna Configuration	58
4.24	Simulated return loss response of SM	59
4.25	Radiation pattern of SM	59
4.26	Simulated return loss for S-shape monopole antenna	61
4.27	Radiation pattern of SM1	62
4.28	Radiation pattern of SM2	63
4.29	Radiation pattern of SM3	63

4.30	Radiation pattern of SM4	63
4.31	Fabricated C-shaped monopole antenna (CMB4)	66
4.32	Measured return loss response of fabricated antenna	67
4.33	Fabricated Loop monopole antenna	67
4.34	Measured return loss S11 of loop monopole antenna	68
4.35	Radiation pattern of fabricated c-shape monopole antenna, CM4	69
4.36	Measured radiation pattern of loop monopole antenna LM4	70

LIST OF ABBREVIATIONS

WSN	-	Wireless Sensor Network
HPBW	_	Half Power Beamwidth
VSWR	_	Voltage Standing Wave Ratio
CPU	_	Central Processing Unit
UPS	_	Uninterruptible Power Supply
RF	_	Radio Frequency
QoS	_	Quality of Service
LAN	_	Local Area Network
WAN	_	Wide Area Network
TV	_	Television
RL	_	Return Loss
BW	_	Band Width
MMICs	_	Microwave Monolithic Integrated Circuits
OEICs	_	Optoelectronic Integrated Circuits
PC	_	Personal Computer
IEEE	_	Institute of Electrical and Electronics Engineers
ISM	_	Industrial Scientific and Medical
WiFi	_	Wireless Fidelity
SHR	_	Self Healing Ring
СМ	_	C-shaped Monopole Antenna
LM	_	Loop Monopole Antenna
SM	_	S-shaped Monopole Antenna

LIST OF SYMBOLS

GHz	_	Giga Hertz
MHz	_	Mega Hertz
Hz	_	Hertz
Г	_	reflection coefficient
Zin	_	input impedance
Zo	_	characteristic impedance
Zl	_	load impedance
dB	_	decibel
Ω	_	ohm
V _{max}	_	maximum voltage
V_{min}	_	minimum voltage
S ₁₁	_	input reflection coefficient
$\mathbf{f}_{\mathbf{h}}$	_	high frequency
\mathbf{f}_1	_	low frequency
$\mathbf{f}_{\mathbf{c}}$	_	center frequency
Er	_	dielectric constant of the substrate
εeff	_	effective dielectric constant
Н	_	height of substrate
fr	_	resonance frequency
с	_	speed of light $3x \ 10^{-8}$ m/s

fo	_	operating frequency
С	_	Capacitance
R	_	Resistance
L	_	Inductance
tan δ	_	loss tangent
t	_	copper thickness
Wg	_	width of gap
La	_	length of center arm
Lg	_	Length of gap
mm	_	milimeter
d	_	diameter
λο	_	free-space wavelength

LIST OF APENDIX

APPENDIX	TITLE	PAGE	
А	Datasheets of Rogers R03000 Series High Frequency	75	

Datasheets of Rogers R03000 Series High Frequency 75 Laminates

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Wireless sensor networks (WSNs) are networks that consist of spatially distributed devices using sensors to monitor physiological conditions, agricultural environment and disaster rescue [1]. This new emerging technology can be applied to improve the quality of life such as in agricultural industries including monitoring of soil properties like temperature, humidity, and chemical composition. These can be measured in a collective way, thus providing essential data for the entire farm to start a new batch of crop.

Lots of other applications that can be benefitted from this technology are in environmental and habitat studies, military surveillance, and infrastructure for health monitoring. Hence, all WSN components need to be addressed. One important factor for consideration is communication. To monitor a collective network, each node has to communicate with central servers wirelessly under the constraint of low power consumption, low cost and added design flexibility. The necessary on-chip integrated transceivers are widely available.

However, WSN as an individual node faced a lot of constraints in terms of limited processing space, storage capacity and communication bandwidth. This is because; it has to be low in energy source. Thus compactness and small design are crucial for WSN antenna. The focus of this research is to design WSN antenna with reduced size. Based on modification from several research papers, three monopole antenna configurations are proposed C-shaped monopole antenna, loop monopole antenna and S-shaped monopole antenna. Parametric investigation is then carried out to achieve size reduction as well as desired frequency of operation of 2.45 GHz. This proposed design is then simulated and fabricated to obtain the properties of the antenna. C-shaped monopole and loop monopole antenna successfully achieved the desired frequency and size miniaturization and can be use for WSN application.

1.2 Problem Statement

WSN can be applied to various industries. Many applications are yet to be discovered that can be benefitted by WSN technologies. Antenna design for WSN faced the constraint in terms of small size and compact antennas as well as the need for better performance. This research addresses this problem by proposing suitable antenna configuration that operates in 2.45 GHz ISM band with focused on size miniaturization.

1.3 Objective

The objective of this project is to design reduced size antenna for WSN application. The chosen frequency of application is 2.45 GHz. The proposed design sets are then studied and analyzed to obtain the desired specification. The performances of these antennas are then compared. The optimum antenna is then fabricated and measured.

1.4 Scope of Work

The scope of work consists of several stages. Firstly, the WSN architecture is studied and the importance of WSN antenna is investigated through reported designs in the literature. Next, the antenna theory is studied whereby suitable WSN antennas can be proposed. Thirdly, three antenna configurations are proposed based on modifications done to the basic monopole antenna that is normally used in WSN application.

- Printed C-shaped monopole antenna
- Printed S-shaped monopole antenna
- Printed loop monopole antenna

These three configurations are then simulated and analyzed. Performance measures obtained are in terms of return loss, efficiency and radiation pattern. These are then analyzed and compared. Further fine tuning is done for optimization purposes. The optimum antenna is then fabricated and measured for verification with the simulated results.

1.5 Thesis Outline

This thesis consists of five chapters. The first chapter outlines the undertaken research briefly by presenting its background, and problem statement, followed by the objective, scope of study and thesis outline. Chapter two discusses relevant literature review on WSN, constraints in designing WSN antennas and several related WSN antenna designs that have been reported. In chapter three, brief theory on the antenna is presented, followed by the design methodology. Explanation on the fabrication and measurements are also given. The simulation and measurement results are presented next in chapter four. These are analyzed in depth and the findings highlighted. The final chapter concludes the thesis. Recommendation for future work is then given.

REFERENCES

- [1] Yang Yu, Viktor K Prasanna, Bhaskar Krishnamachari, "Information Processing And Routing In Wireless Sensor Networks" 2nd^t Edition, Imperial College Press, London, 2010
- [2] F.L Lewis, D.J Cook, S.K Das, "Wireless Sensor Network Smart Environment: Technologies, Protocol and Application," 2st Edition, John Wiley & Sons, New York, 2004.
- [3] Culler. D., Estrin. D. and Srivasta, M. "Guest Editors' Introduction: Overview of Sensor Networks" IEEE journal in Computers Society, Vol 37, pp 41- 49, August 2004.
- [4] Liu.H, M.Zhijun, W.Maohua, "Wireless Sensor Network for Cropland Environment Monitoring" Networks Security, Wireless Communications and Trusted Computing Conference, August 2009.
- [5] Constantine, A. Balanis, "Antenna Theory Analysis and Design," 3rd Edition, John Wiley &, Sons, Singapore, 2005.
- [6] Junjun Wang and Xudong He, "Analysis and Design of a Novel Compact Multiband Printed Antenna" International Journal of Antennas and Propagation by Hindawi Publishing Corporation, 2013
- [7] Li Zhang, Yong-Chang Jiao, Yang Ding, Bo Chen, and Zi-Bin Weng, "Cpw-Fed Broadband Circularly Polarized Planar Monopole Antenna With Improved Ground-Plane Structure" Ieee Transactions On Antennas And Propagation, Vol. 61, No. 9, Pp 4824- 4828, September 2013
- [8] Ping Cao, Yi Huang, Jingwei Zhang and Rula Alrawashdeh, "A Compact Super Wideband Monopole Antenna" in Antennas and Propagation (EuCAP), Proceedings of 7th European on, pp 3107-3110, 2013.

- [9] H. Chen, X. Yang, Y.-Z. Yin, J.-J. Wu And Y.-M. Cai, "Tri-Band Rectangle-Loaded Monopole Antenna With Inverted-L Slot For Wlan/ Wimax Applications" Electronics Letters 26th September 2013 Vol. 49 No. 20 Pp. 1261–1262
- [10] Chenard, J.-S., Zilic, Z.; Chun Yiu Chu; Popovic, M., "Design Methodology For Wireless Nodes With Printed Antennas," Design Automation Conference, 2005. Proceedings. 42nd, Pp. 291- 296, 13-17 June 2005
- [11] Li Zheng, "ZigBee Wireless Sensor Network in Industrial Applications," SICE-ICASE, 2006. International Joint Conference 18-21 Oct. 2006, Page(s):1067 - 1070.
- [12] K. Phaebua, and D. Torrungrueng,, "A Compact Antenna for server Node of Wireless Sensor network," IEEE Antennas Wireless Propag. Lett., pp. 1-4, 2008.
- [13] Panda, J.R.; Kshetrimayum, R.S."A printed C-shaped dual-band monopole antenna for RFID applications " in Applied Electromagnetics Conference (AEMC), pp1-3,2009
- [14] Mallahzadeh, A.R.; Seyyedrezaei, S.F.; Ghahvehchian, N.; Nezhad, S.M.A.;
 Mallahzadeh, S, "Tri-band printed monopole antenna for WLAN and WiMAX MIMO system" in Antennas and Propagation (EUCAP), Proceedings of the 5th European Conference on 2011. Pp548-551
- [15] Xian-Ling Liang, Shun-Shi Zhong and Li-Na Zhang "Printed S-Shaped Monopole Antenna for Tri-Band WLAN Application" Antennas, Propagation & EM Theory, 2006. ISAPE '06. 7th International Symposium on 26-29 Oct. 2006 pp1-3.
- [16] Pulse Finland Oy "W3000 ceramic monopole antenna" in W3000 datasheets, copyright of 2009.
- [17] Balanis, C. A. and Birtcher, C. R. (2007)" Antenna Measurements, in Modern AntennaHandbook (ed C. A. Balanis), John Wiley & Sons, Inc., Hoboken, NJ, USA