HARDWARE-ACCELERATED LOCALIZATION FOR AUTOMATED LICENSE PLATE RECOGNITION SYSTEM

HARDWARE-ACCELERATED LOCALIZATION FOR AUTOMATED LICENSE PLATE RECOGNITION SYSTEM

CHIN TECK LOONG

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical - Computer \& Microelectronic System)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

For my beloved family.

ACKNOWLEDGEMENT

I would like to take this opportunity to express my deepest gratitude to Associate Professor Dr. Muhammad Nadzir bin Marsono, my Master Project supervisor who has provided me with much assistance and advice throughout the whole duration of the implementation of this project. With his guidance, I have successfully solved many problems encountered in this project. I would also like to thank all lecturers, tutors and technicians not mentioned here for any support provided throughout the implementation of this project.

I would also like to thank my beloved parents and other family members for their continuous support and encouragement especially when I faced problems in this project. Without their support and encouragement, I would not have gone this far, especially juggling between work and academic workload simultaneously. Last but not least, I would also wish to thank my course mates and friends, mainly Chng Choon Siang, Ong Wen Jian and Kelvin Quek Wei Luo, who have assisted me in this project.

Abstract

Automatic License Plate Recognition (ALPR) is a continuous process of extracting license plate information from a series of input images. Localization is an imperative stage in ALPR system because it extracts the sub image which contains the potential license plate for subsequent processing. Many ALPR systems are designed to operate on general purpose processor, in which the low degree of instruction and data level parallelism is not maximized, resulting in lower efficiency. Also, current ALPR system in the market is not modular and generalized to cater license plates from different nations with different languages and standards. This project proposes a multi-feature extraction algorithm for license plate localization catering various plate and environment variation factors, as well as hardware architecture to implement the algorithm with full modularity baseline. The proposed hardware architecture has been successfully modelled and implemented using System Verilog. It achieves an average speed up of $222 \times$ across different test images compared to software-based algorithm and 100% matching the localization accuracy in software.

Abstract

ABSTRAK

Pengenalan Plat Lesen Automatik (PPLA) adalah satu proses berterusan yang mengekstrak maklumat plat lesen daripada beberapa siri imej input. Lokalisasi adalah peringkat yang penting dalam sistem PPLA kerana ia memproses sub-imej yang mengandungi plat lesen untuk pemprosesan selanjutnya. Kebanyakan sistem PPLA direka bentuk untuk beroperasi menggunakan mikroprosesor serbaguna, di mana aturan sistem dan data yang rendah tidak dioptimumkan, mengakibatkan kecekapan sistem yang rendah. Sistem PPLA semasa di pasaran tidak dapat membezakan plat lesen dari negara-negara yang berbeza dari segi bahasa dan spesifikasi. Projek ini mencadangkan satu algoritma lokalisasi dalam menganalisa pelbagai jenis ciri imej input untuk faktor plat lesen dan persekitaran. Struktur senibina perkakasan juga dicadangkan untuk melaksanakan algoritma ini dengan suai garis dasar penuh. Sistem yang dicadangkan telah berjaya dimodelkan menggunakan Sistem Verilog. Ia mencapai kelajuan purata $222 \times$ daripada seluruh imej cubaan apabila berbanding dengan algoritma berasaskan perisian, dan 100% terbukti sama dengan ketepatan perisian.

TABLE OF CONTENTS

CHAPTER TITLE PAGE
DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xi
LIST OF ABBREVIATIONS xiii
LIST OF APPENDICES xiv
1 INTRODUCTION 1
1.1 Introduction 1
1.2 Motivation and Problem Statement 2
1.3 Aim and Objectives 4
1.4 Project Scope 4
1.5 Report Organization 5
2 LITERATURE REVIEW 7
2.1 Overview of ALPR 7
2.2 Related Work on License Plate Localization 8
2.2.1 Localization Based on Boundary/Edge Features 8
2.2.2 Localization Based on Global Features 9
2.2.3 Localization Based on Texture Features 10
2.2.4 Localization Based on Color Features 10
2.2.5 Localization Based on Character Features 11
2.3 Related Works on Hardware ALPR Systems 11
2.3.1 Implementation of ALPR Systems on DSP Platform 12
2.3.2 Implementation of ALPR Systems on FPGA 13
2.4 Recommendation ITU-R BT.656-4 14
2.5 Chapter Summary 16
3 RESEARCH METHODOLOGY 17
3.1 Algorithm Development on Software-Based Plat- form 17
3.2 Algorithm Validation and Verification 18
3.3 Algorithm Profiling 19
3.4 Hardware Architecture Design 20
3.5 Hardware Simulation and Verification 21
3.6 Software Requirements 23
3.6.1 Quartus II 23
3.6.2 ModelSim® 23
3.6.3 MATLAB® 24
3.7 Chapter Summary 24
4 ALGORITHM VALIDATION AND PROFILING 25
4.1 Localization Algorithm with Multi-Feature Extrac- tion 25
4.1.1 Validation of Localization with Bound- ary/Edge Feature 26
4.1.2 Validation of Localization with Color Feature 29
4.1.3 Validation of Localization with Multi- Feature Extraction 29
4.2 Algorithm Performance Analysis 32
4.3 Algorithm Profiling 32
4.4 Chapter Summary 35
5 HARDWARE DESIGN, SYNTHESIS AND SIMULA- TION VERIFICATION 36
5.1 Architecture Overview 36
5.2 Design and Validation of Median Filter Module 38
5.3 Design and Validation of Edge Detector Module 39
5.4 Design and validation of Color Detector Module 45
5.5 Validation and Verification of Overall Design Functionality 47
5.6 Design Synthesis Summary and Operating Fre- quency 48
5.7 Comparison with Existing Works 49
$5.8 \quad$ Chapter Summary 50
6 CONCLUSION AND FUTURE WORKS 51
6.1 Conclusion 51
6.2 Recommendation for Future Works 52
REFERENCES 53
Appendices A - C 57-80

LIST OF TABLES

TABLE NO. TITLE PAGE
1.1 Summary of ALPR Stages. 3
2.1 Summary of related works on license plate localization algorithms. 9
2.2 Summary of related works on hardware implementation of ALPR systems. 12
3.1 Categories of test images for algorithm validation and verification. 19
4.1 Summary of algorithm performance analysis in term of accuracy. 32
4.2 Summary of algorithm profiling result for three test images. 35
5.1 Hardware synthesis summary of proposed localization module. 48
5.2 Performance comparison of localization between software and hardware. 49
5.3 Summary of performance comparison with existing works. 50
C. 1 Sample Set 1 and Localization Results. 81
C. 2 Sample Set 2 and Localization Results. 82
C. 3 Sample Set 3 and Localization Results. 83
C. 4 Sample Set 4 and Localization Results. 84
C. 5 Sample Set 6 and Localization Results. 85
C. 6 Sample Set 7 and Localization Results. 86

LIST OF FIGURES

FIGURE NO.TITLE
PAGE
1.1 Overview of ALPR systems. 2
2.1 Encoding standard of Recommendation ITU-R BT. 601 Part A. 14
2.2 Composition of interface data stream defined by Rec. ITU-R BT.656-4. 15
3.1 Software based algorithm development flow. 18
3.2 Hardware architecture design flow. 21
3.3 Verification flow for overall localization module functionality. 22
4.1 Overview of proposed multi-feature extraction localization algorithm. 26
4.2 Validation result of localization with boundary/edge feature. 28
4.3 Validation result of localization with color feature. 30
4.4
Validation result of localization with multi-feature extraction. 31
4.5 Sample test images for algorithm performance analysis. 33
4.6 Screen shot of MATLAB® Profiler's result. 34
5.1 Architecture overview of proposed localization FDA. 37
5.2 Time-space diagram of proposed localization FDA. 37
5.3 Architecture design of median filter module's data path. 38
5.4 Timing diagram of functionality simulation for median filter module. 39
5.5 Overview of edge detection algorithm. 40
5.6 Architecture design of edge detector module's data path. 41
5.7 Timing diagram of functionality simulation for edge detector module. 42
5.8 Pseudo code for address counter control unit. 42
5.9 Architectural design of sorter module. 43
5.10 ASM chart for sorter module. 44
5.11 Architecture design of color detector module. 45
5.12 Architectural design of modulo module. 46
5.13 Timing diagram of functionality simulation for color detector module. 47
5.14 MATLAB® codes snippets for verification flow implementa- tion. 47
5.15 Comparison of localized results between software and hardware. 48

LIST OF ABBREVIATIONS

ALPR	-	Automatic License Plate Recognition
ASIC	-	Application Specific Integrated Circuit
ASM	-	Algorithmic State Machine
CCA	-	Connected Component Analysis
CCL	-	Connected Component Labelling
CCTV	-	Closed-Circuit Television
DFT	-	Discrete Fourier Transform
DSP	-	Digital Signal Processing
DUT	-	Device Under Test
EAV	-	End of Active Video
EDH	-	Error Detection and Handling
FDA	-	Fully Dedicated Architecture
FPGA	-	Field Programmable Gate Array
FSM	-	Finite State Machine
HLS	-	Hue-Luminance-Saturation
IC	-	Integrated Circuit
IP	-	Intellectual Property
ITU	-	International Telecommunication Union
RGB	-	Red-Green-Blue
SAV	-	Start of Active Video
SCW	-	Sliding Concentric Windows
SOM	-	Self-Organizing Map
SVN	-	Support Vector Machine
VEDA	-	Vertical Edge Detection Algorithm
VQ	-	Vector Quantization
WT	-	Wavelet Transform

LIST OF APPENDICES

APPENDIX TITLE PAGE
A MATLAB® Code for Proposed Localization Algorithm 57
B \quad System Verilog Code for Proposed FDA 63
C Sample Test Images and Localization Results 80

CHAPTER 1

INTRODUCTION

1.1 Introduction

The number of motor vehicles on the road increases over the years and it has driven an urgent need to manage these vehicles systematically and efficiently. This results in the emergence of transportation related applications such as traffic monitoring and surveillance, congestion avoidance and control, and automatic electronic payment for toll and parking fee.

Most of these intelligent transportation systems utilize image processing algorithms to process still images or video frames captured remotely. Advanced computer vision technologies in recent years have enabled the development of various efficient software-based algorithms in this field. Researches published in [1] and [2] have provided complete study of computer vision techniques in transportation domain. Many current works utilize neural networks to process and analyze the torrents of traffic images [3,4], but there are very few real time devices being developed.

One of the critical stages in intelligent transportation systems is Automatic License Plate Recognition (ALPR). ALPR is a continuous process of extracting information of license plate from the raw input images captured remotely. They can be color or black and white. There are many different ways of implementing an ALPR system, which is one of the focused research area in past decade [5-8]. At present, many successful commercial software-based ALPR systems are available in the market, but most of them require dedicated camera systems which provide video input acquired under controlled environment [4]. In other words, quality of the acquired images is indeed critical for an ALPR system.

Figure 1.1: Overview of ALPR systems [5].

Another imperative requirement for an efficient ALPR is the processing time. Real time processing is required so that the system will not miss out a single frame in the continuous video stream. The definition of real time is very much dependent on the target traffic flow. For example, the throughput of an ALPR system for highway monitoring ought to be higher than an ALPR system deployed in the residential area with lighter traffic. On a road in residential area, the video stream of 20 frames per second is sufficient for real-time analysis, but this is insufficient for highway with speed limit of $110 \mathrm{~km} /$ hour [9]. ALPR systems are generally composed of four processing stages [5] as depicted in Figure 1.1. Table 1.1 provides short descriptions of each ALPR's stage.

1.2 Motivation and Problem Statement

Even this area has been actively researched, many areas of improvement are still possible on existing ALPR systems [5]. Currently, most of the ALPR algorithms are developed based on specific constrained conditions. The implicit assumption for these ALPR systems is that the input video is obtained in a controlled capture environment, via a dedicated camera with high speed and high resolution [4]. A modular and generalized solution which is able to cater license plates from different nations with different languages and standards does not exist at present.

Table 1.1: Summary of ALPR Stages.

ALPR Stage	Descriptions
Image Acquisition	- Involves capturing of input images using a camera. - Heavily dependent on camera parameters: resolution, shutter speed, exposure, light, and orientation. - Depends on hardware performance, not many researches have been carried out in this stage. - ALPR's main objective is to eliminate hardware dependency in this stage.
Localization of License Plate Region	- To identify the potential license plate region with some image features. - The input is raw image acquired by the camera. - The output is sub-image of extracted license plate or the coordinates bounding the sub-image. - Critical in overall ALPR's recognition accuracy.
Segmentation of Plate Character	- Involves extracting characters from localized plate region. - Resolve the undesired problems on the localized sub image which are inherited from previous stage such as tilt and non-uniform brightness.
Character Recognition	- Involves pattern matching algorithm between the segmented characters and a predefined database. - Accuracy issue due to non-uniform sizes of the extracted character. - Hence, the characters are typically resized before recognition is performed.

Many advanced software-based ALPR systems have been designed to operate on a general purpose processor. The general purpose processor is not efficient at low degree of instruction and data level parallelism to perform real time computation resulting in lower efficiency compared to dedicated hardware with pipelining design [10]. Besides, the general purpose processors require higher power consumption and cost. Hence, there is an intensified need of ALPR system with higher computing power, but lower energy consumption to handle the exponential growth of vehicles [11]. Therefore, hardware implementation of ALPR algorithms has gained much attention during past decade along with the advancement of on-chip processing technology such as Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC).

Analyzing the three compute intensive stages of an ALPR system, it was proven in [12, 13], that the recognition rate can be increased by applying prior knowledge on the potential characters in segmentation stage. Also, certain amount of pre-stored information is required to achieve high accuracy in character recognition stage, which
in turns translates to memory requirements [5]. Due to the memory requirement of these two stages, it is more efficient to have them remain in the backend process running on general purpose processors. Hence, there is strong motivation to explore the feasibility of hardware based localization to realize a real-time ALPR system. It is very critical to locate the potential local area containing only license plates and limit the backend compute intensive algorithms operating only on the pixels within this local area [14].

1.3 Aim and Objectives

The aim of this project is to design and develop hardware accelerated localization architecture for ALPR system. To achieve the aim, the objectives of this project are:

1. To propose a multi-feature extraction algorithm for license plate localization catering various plate and environment variation factors. This algorithm needs to be simplified for hardware implementation without compromising localization accuracy.
2. To design hardware based fully dedicated architecture (FDA) to implement the proposed algorithm with full modularity baseline. This follows by performance analysis and benchmark of the proposed FDA with related works.

1.4 Project Scope

Out of the four ALPR stages described in Section 1.1, this project focuses only on the localization stage. The segmentation and recognition stages are more complicated which require training based on a priori database and hence they are more efficient to be implemented on backend server with higher memory requirements. Hence, the feasibility of accelerating localization stage with dedicated hardware architecture is explored in this project.

It involves analysis of various localization algorithms in term of efficiency, accuracy, and feasibility for hardware implementation, follows by a selection of critical features to be integrated into a multi-feature extraction algorithm for license plate
localization. This newly proposed algorithm is developed to address various plate and environment variations which severely impair ALPR's performance. The data format of the input image used in this project is in accordance to Recommendation ITU-R BT.656-4 which describes the means of interconnecting digital television equipment operating on the 525 -line or 625 -line standards, complying with the 4:2:2 encoding parameters as defined in Recommendation ITU-R BT.601.

A FDA is proposed to implement the multi-feature extraction algorithm for license plate localization. This FDA only extracts a subset of information from the real time video frames acquired by ALPR's front end camera nodes. In this case, information required to be sent to the backend recognition system only consists of potential localized license plate region of smaller resolution. This system decreases the bandwidth requirement between the smart camera and the backend server. Subsequently, performance analysis and algorithm profiling of both hardware and software are performed in term of execution time, localization accuracy and hardware resource utilization.

1.5 Report Organization

This report is divided into six chapters to present the entire project in an organized manner.

In Chapter 2, the theoretical background and related works involved in this project are described. It includes an overview on ALPR system, before focuses on detail discussion of related works in license plate localization and hardware implementation of various localization algorithms. It also includes detail description of Recommendation ITU-R BT.656-4 - the video standard used in this project.

In Chapter 3, methodologies involved in this project are described. It illustrates in detail the five main stages of methodology involved in this project: algorithm development on software-based platform, algorithm validation and verification, algorithm profiling, hardware architecture design, and hardware simulation and verification. In order to give the reader a further insight on this project, the softwares used throughout the course of this project are described in this chapter as well.

In Chapter 4, the details of the proposed localization algorithm with multifeature extraction is presented, followed by a series of analysis in term of accuracy based on data set used in this project. Also, overall performance of the proposed localization algorithm developed in MATLAB® is profiled and discussed.

In Chapter 5, the reader will be briefed on the design consideration involved in this project, followed by detailed architectural descriptions of every major hardware module designed. Also, a series of timing diagrams obtained from the simulation process are presented. These simulation results will be analyzed and discussed in this chapter in order to verify the functionality and evaluate the performance of the proposed FDA. A comparison and benchmark summary of the proposed FDA with previous works is also included.

In Chapter 6, the conclusion of this project is made. Also included in this chapter are the limitations of this project and recommendations for future works.

REFERENCES

1. Veeraraghavan, H., Masoud, O. and Papanikolopoulos, N. P. Computer Vision Algorithms for Intersection Monitoring. Intelligent Transportation Systems, IEEE Transactions on, June 2003. 4(2): 78-89.
2. Loce, R. P., Bernal, E. A., Wu, W. and Bala, R. Computer Vision in Roadway Transportation Systems: A Survey. Journal of Electronic Imaging 22(4), Dec 2013. (041121).
3. Caner, H., Gecim, H. S. and Alkar, A. Z. Efficient Embedded Neural-Network-Based License Plate Recognition System. Vehicular Technology, IEEE Transactions on, Sep 2008. 57(5): 2675-2683.
4. Sarfraz, M. S., Shahzad, A., Elahi, M. A., Fraz, M., Zafar, I. and Edirisinghe, E. A. Real-time Automatic License Plate Recognition for CCTV Forensic Applications. J Real-Time Image Proc, 2013. 8: 285-295.
5. Du, S., Ibrahim, M., Shehata, M. and Badawy, W. Automatic License Plate Recognition (ALPR): A State-of-the-Art Review. Circuits and Systems for Video Technology, IEEE Transactions on, Feb 2013. 23(2): 311-325.
6. Liu, G., Ma, Z., Du, Z. and Wen, C. The Calculation Method of Road Travel Time Based on License Plate Recognition Technology. Advances in Information Technology and Education Communication in Computer and Information Science, 2011. 201: 385-389.
7. Chiou, Y.-C., Lan, L. W., Tseng, C.-M. and Fan, C.-C. Optimal Locations of License Plate Recognition to Enhance the Origin-Destination Matrix Estimation. Asian Transport Studies, 2012. 2: 80-92.
8. Anagnostopoulos, C.-N. E., Anagnostopoulos, I. E., Psoroulas, I. D., Loumos, V. and Kayafas, E. License Plate Recognition From Still Images and Video Sequences: A Survey. Intelligent Transportation Systems, IEEE Transactions on, Sep 2008. 9(3): 377-391.
9. Arth, C., Limberger, F. and Bischof, H. Real-Time License Plate Recognition on an Embedded DSP-Platform. Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on, Jun 2007.
10. Bellas, N., Chai, S. M., Dwyer, M. and Linzmeier, D. FPGA Implementation of a License Plate Recognition SoC using Automatically Generated Streaming Accelerators. Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International, Apr 2006.
11. Kanamori, T., Amano, H., Arai, M., Konno, D., Nanba, T. and Ajioka, Y. Implementation and Evaluation of a High Speed License Plate Recognition System on an FPGA. Computer and Information Technology, 2007. CIT 2007. 7th IEEE International Conference on, Oct 2007.
12. Chang, S.-L., Chen, L.-S., Chung, Y.-C. and Chen, S.-W. Automatic License Plate Recognition. Intelligent Transportation Systems, IEEE Transaction on, Mar 2004. 5(1): 42-53.
13. Jia, X., Wang, X., Li, W. and Wang, H. A Novel Algorithm for Character Segmentation of Degraded License Plate Based on Prior Knowledge. Automation and Logistics, 2007 IEEE International Conference on, Aug 2007: 249-253.
14. Yang, S.-Y., Lu, Y.-C., Chen, L.-Y. and Cherng, D.-C. Hardware-accelerated Vehicle License Plate Detection at High-definition Image. Robot, Vision and Signal Processing (RVSP), 2011 First International Conference on, Nov 2011: 106-109.
15. Faradji, F., Rezaie, A. H. and Ziaratban, M. A Morphological-Based License Plate Location. Image Processing, 2007. ICIP 2007. IEEE International Conference on, Sep 2007. 1: 57-60.
16. Sanyuan, Z., Mingli, Z. and XiuZi, Y. Car Plate Character Extraction under Complicated Environment. Systems, Man and Cybernetics, 2004 IEEE International Conference on, 2004. 5: 4722-4726.
17. Yang, F. and Ma, Z. Vehicle License Plate Location based on Histogramming and Mathematical Morphology. Automatic Identification Advanced Technologies, 2005. Fourth IEEE Workshop on, Oct 2005: 89-94.
18. Suryanarayana, P. V., Mitra, S. K., Baneree, A. and Roy, A. K. A Morphology Based Approach for Car License Plate Extraction. INDICON, 2005 Annual IEEE, Dec 2005: 24-27.
19. Wu, H.-H. P., Chen, H.-H., Wu, R.-J. and Shen, D.-F. License Plate Extraction in Low Resolution Video. Pattern Recognition, 2006. ICPR 2006. 18th International Conference on, 2006. 1: 824-827.
20. ke Xu, H., hua Yu, F., hua Jiao, J. and sheng Song, H. A New Approach of the Vehicle License Plate Location. Parallel and Distributed Computing,

Applications and Technologies, 2005. PDCAT 2005. Sixth International Conference on, Dec 2005: 1055-1057.
21. Anagnostopoulos, C. N. E., Anagnostopoulos, I. E., Loumos, V. and Kayafas, E. A License Plate-Recognition Algorithm for Intelligent Transportation System Applications. Intelligent Transportation Systems, IEEE Transactions on, Sep 2006. 7(3): 377-392.
22. Zunino, R. and Rovetta, S. Vector Quantization for License-Plate Location and Image Coding. Industrial Electronics, IEEE Transactions on, Feb 2000. 47(1): 159-167.
23. R.Parisi, Claudio, E., G.Lucarelli and G.Orlandi. Car Plate Recognition by Neural Networks and Image Processing. Circuits and Systems, 1998. ISCAS '98. Proceedings of the 1998 IEEE International Symposium on, Jun 1998. 3: 195-198.
24. Hsieh, C.-T., Juan, Y.-S. and Hung, K.-M. Multiple License Plate Detection for Complex Background. Nonlinear Signal and Image Processing, 2005. NSIP 2005. Abstracts. IEEE-Eurasip, May 2005.
25. Shi, X., Zhao, W. and Shen, Y. Automatic License Plate Recognition System Based on Color Image Processing. Computational Science and Its Application - ICCSA 2005, 2005. 3483: 1159-1168.
26. Cheng, Y. Mean shift, Mode Seeking, and Clustering. Pattern Analysis and Machine Intelligence, IEEE Transactions on, Aug 1995. 17(8): 790-799.
27. Matas, J. and Zimmermann, K. Unconstrained Licence Plate and Text Localization and Recognition. Intelligent Transportation Systems, 2005. Proceedings. 2005 IEEE, Sep 2005: 225-230.
28. Alegria, F. and Girao, P. S. Vehicle Plate Recognition for Wireless Traffic Control and Law Enforcement System. Industrial Technology, 2006. ICIT 2006. IEEE International Conference on, Dec 2006: 1800-1804.
29. Hontani, H. and Koga, T. Character Extraction Method without Prior Knowledge on Size and Position Information. Vehicle Electronics Conference, 2001. IVEC 2001. Proceedings of the IEEE International, Sep 2001: 67-72.
30. Setumin, S., Sheikh, U. U. and Abu-Bakar, S. Character-Based Car Plate Detection and Localization. Information Sciences Signal Processing and their Applications (ISSPA), 2010 10th International Conference on, May 2010: 737-740.
31. Viola, P. and Jones, M. Robust Real-Time Object Detection. International

Journal of Computer Vision, 2001.
32. Xie, M., Fu, H. and Liu, Z. One Design Method of License Plate Recognition System with High Recognition Rate. IT in Medicine and Education, 2008. ITME 2008. IEEE International Symposium on, Dec 2008: 44-49.
33. Musoromy, Z., Bensaali, F., Ramalingam, S. and Pissanidis, G. Comparison of Real-Time DSP-Based Edge Detection Techniques for License Plate Detection. Information Assurance and Security (IAS), 2010 Sixth International Conference on, Aug 2010: 323-328.
34. Zhai, X., Bensaali, F. and Ramalingam, S. Improved Number Plate Localisation Algorithm and Its Efficient Field Programmable Gate Arrays Implementation. Circuits, Devices and Systems, IET, Mar 2013. 7(2): 93-103.
35. Recommendation ITU-R BT.656-4, 2014. URL http://www-inst. eecs.berkeley.edu/~cs150/Documents/ITU656.PDF.
36. Recommendation ITU-R BT.601-4, 2014. URL http://www-inst. eecs.berkeley.edu/~cs150/Documents/ITU601.PDF.
37. Medialab LPR Database, 2014. URL http://www.medialab.ntua. gr/research/LPRdatabase.html.
38. Arth, C., Bischof, H. and Leistner, C. TRICam - An Embedded Platform for Remote Traffic Surveillance. Computer Vision and Pattern Recognition Workshop, 2006. CVPRW '06. Conference on, Jun 2006: 125.
39. Hongliang, B. and Changping, L. A Hybrid License Plate Extraction Method Based on Edge Statistics and Morphology. Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, Aug 2004. 2: 831834.

