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ABSTRACT 

 

 

 

Projected to be a material of scientific legend, carbon nanotubes (CNTs) 

exhibit a variety of intriguing electronic properties such as metallic and 

semiconducting behaviour due to the quantum confinement of electrons in the 

circumferential direction. The steady-state electronic transport properties of carbon 

nanotube, including phonon scattering are investigated. High Field Transport spanning 

the complete landscape of equilibrium to nonequilibrium regimes are examined. The 

role of chirality in the evaluation of the electronic band structure of CNTs, and the 

zone folding of graphene, an important precursor for CNT formation are studied. The 

electron energy dispersion relations are obtained by applying the zone folding 

technique to the dispersion relation of graphene, which are calculated using the tight 

binding formalism. Nonequilibrium Arora Distribution Function (NEADF), which is 

a natural extension of Fermi Dirac distribution function by inclusion of energy gained 

/ absorbed in the mean free part (mfp) forms the strong foundation for analysis, from 

theoretical perspective. 
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ABSTRAK 

 

 

 

 Dijangka menjadi bahan legenda saintifik, karbon nanotubes (CNTs) 

mempamerkan pelbagai ciri-ciri menarik elektronik seperti logam dan tingkah laku 

semikonduktor kerana pantang kuantum elektron dalam arah lilitan. Sifat-sifat 

pengangkutan elektronik keadaan mantap karbon tiub nano, termasuk fonon 

penyerakan disiasat. Pengangkutan bidang tinggi merangkumi landskap lengkap 

keseimbangan kepada rejim tak seimbang diteliti. Peranan chirality dalam penilaian 

struktur elektronik jalur CNTs, dan lipatan zon daripada graphene, seorang pelopor 

penting untuk pembentukan CNT dikaji. Hubungan serakan tenaga elektron diperolehi 

dengan menggunakan teknik lipatan zon untuk hubungan sebaran daripada graphene, 

yang dikira menggunakan formalisme mengikat ketat. Fungsi taburan tak seimbang 

Arora (NEADF), yang merupakan lanjutan daripada fungsi taburan Fermi Dirac oleh 

kemasukan tenaga diperolehi / diserap dalam min sebahagian percuma (mfp) 

membentuk asas yang kukuh untuk analisis, dari perspektif teori. 
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    CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

 

 

Carbon nanotubes have remarkable potential in nanoscale electronic devices. 

They are often configured in field effect transistor structures. The important factors 

that determine the transport properties of CNTs include the wire diameter, which is 

important for both classical and quantum size effects, material composition, surface 

conditions, crystal quality, and crystallographic orientation along the wire axis for 

materials [1] 

 

The determination of the transport properties of a material, namely the 

response of the electrons in the material to the application of an external 

electromagnetic field, or a temperature gradient, is the most useful way to classify 

material properties [2]. The dc conductivity can be used to describe the material as 

metallic, insulating or semiconducting. But the thermal transport and the effects of a 

magnetic field can are also important properties to measure [2]. From theoretical 

perspective, we would like to calculate the relevant transport coefficients in the 

linear-response regime, where the effect of perturbing fields is taken into account. 

  

The nature of transport in nanodevices in general is dependent on the 

characteristic length scales of the active region of the device. Electronic transport in 

low dimensional systems can be categorized into two types-ballistic transport and 

diffusive transport. The transport is said to be in the diffusive regime if the scattering 

events are frequent as carriers traverse the active region of the device. In this case, 

the  
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transport becomes reasonably approximated by the semiclassical Boltzmann 

transport equation (BTE). Energy dissipation occurs throughout the device, and the 

contacts are simply injectors and extractors of carriers near equilibrium. On the other 

hand, transport is ballistic if no scattering occurs from source to drain, and the wave 

nature of charge carriers becomes important in terms of quantum mechanical 

reflection and interference from the structure itself, and the overall description of the 

transport is in terms of quantum mechanical fluxes and transmission, with energy 

dissipated in the contact themselves rather than active region of the device [3] 

  

Though the literature has not shown any concrete consistency in the 

identifiers for high field initiated saturation of drift velocity and current in a nano 

channel [4], conventional wisdom suggests that a higher mobility leads to a higher 

saturation velocity. However, this general perception is punctured by a series of 

experimental observations and theoretical studies [5][6][7][8]. According to 

Thornber [9], saturation velocity is invariant under scaling of the magnitude of the 

scattering rates, which brings about alteration in mobility. Similarly, the mobility is 

invariant under the scaling of the magnitude of momentum, which alters the 

saturation velocity. Non-equilibrium Arora distribution function [6] (NEADF) is a 

theoretical formalism that covers very well the landscape from low to high electric 

field, from nondegenerate to degenerate state, and converging to low dimensional 

nanosemble.[10]. The crux of NEADF is the realignment of stochastic velocity 

vectors in equilibrium to unidirectional one, ultimately leading to saturation. NEADF 

is much simpler than the nonequilibrium Green function (NEGF) [11] that requires 

extensive numerical computation. 

 

 

1.2     Problem Statement 

 

High field transport spanning a wide range of temperatures from degenerate to 

nondegenerate regimes poses great challenge when under experimental and 

explorative study. 
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Continuous device scaling going into nanoscale creates new opportunities and 

new problems for applications in the ultra large scale integrated circuits (ULSI). In 

the scaled down regime, circuit devices experience substantial departure from the 

inherent characteristics. 

 

Where possible, the model is compared with experimental data. There is the 

possibility of arriving at inconclusive result when analysis is based on a single and 

independent data. 

 

 

1.3  Objectives 

 

 

The objectives of this projects are: 

 

1.       To explore quantum conductance in carbon nanotubes as electrons                                  

       transit from a low field to a high field regime. 

 

2.        To investigate mobility in a collision-free ballistic transport in a                                      

   carbon nanotube channel. 

 

3.        To explore nonequilibrium Arora Distribution Function with the goal               

       of understanding the saturation velocity that forms the backbone of                       

       current-voltage characteristics in metallic CNTs 

 

4.        To investigate the novel properties of CNTs that make them suitable      

       for assortment of interesting applications 
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1.4 Scope 

 

The project is restricted within the following scope: 

 

1. One dimensional (1D) carbon nanotubes form the focus of our study. 2D 

and 3D nanoparticles such thin films, nanoribbons  are not considered  

 

2. The review of band structure of CNTs factors in on graphene as it is 

fundamental to the formation of CNTs via the roll up process. 

 

3. Metallic CNTs with zero bandgap is the focus for comparison with 

experimental data from the published literature, although semiconducting 

modes will be discussed in brief. 

 

4. MATLAB ® (R2013 version) is used is used as a vehicle for 

computational work, drawing graphs and possible simulations 

 

1.5 Research Methodology 

First and foremost, the literature review of CNTs is carried out, with the goal 

of discovering the unique properties of CNTs that make candidates for high field 

transport. This is followed by gathering experimental data from the published 

literature. 

 

 The simulated theoretical model is then compared with the experimental data 

in order to discover consistency or otherwise of previous work on high transport in 

CNTs, which will eventually lead to direction for future work 

 

 The theoretical frame work is based on nonequilibrium Arora’s distribution 

function, while high field characterization is the direct outcome of the construction of 

the appropriate MATLAB®  functions.  
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1.6 Organisation of the Project 

 

Chapter 2 deals with literature review of CNT band structure. It is divided 

into three sections. The first section deals with some fundamentals of CNT. Chirality 

is instrumental to understanding the basic structure of carbon nanotubes. It also 

discusses CNT lattice structure. The second section considers CNT band structure, 

particularly, the band structure of arm chair, and zig-zag nanotubes are discussed. 

The last section of this chapter is devoted to the determination of CNT Brillouin 

zone. 

 

Chapter 3 looks into the concept of high field distribution in carbon 

nanotubes. In this chapter, tilted band diagrams and velocity response to electric field 

are examined. Ballistic mobility and quantum emission are also discussed. It also 

looks into high field distribution function, concluding with the treatment of 

degenerate and nondegenerate responses.  In chapter 4 applications to CNT are 

examined. And finally, the conclusion and future recommendations on the project are 

discussed in chapter 5. 
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