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ABSTRACT 

This project report focuses on through the road architecture of hybrid electric 

vehicles. The main advantage of this type of architecture among many other 

advantages when compared to other hybrid electric vehicle’s architecture is the 

similarity with the conventional vehicles and a potential of an all driven wheels 

technology, which will greatly reduce the tractive effort needed for each wheel. 

However, it is important to note that the interaction of the front axle and the rear axle 

can only occur through the vehicle chassis and on the road. This has given the need to 

gain adequate insight into how the actual torques of the two energy sources are 

generated, the nature of it power flow, how best to meet the torque request by adopting 

their most efficient operating region using dynamic nonlinear mathematical model. 

This work presents the mathematical modelling of Through-the-Road Hybrid Electric 

Vehicle (TtR-HEV), the model comprise of an internal combustion engine model, 

electric motor model, transmission model, vehicle propulsion dynamic model, and 

battery model. Two different models were built for MatLab/Simulink simulation, the 

TtR-HEV and the conventional vehicle models, the models was then applied to 

evaluate propose normal mode power flow design without the frequent start/stop of 

any of it powertrain. Using different standardized drive cycles, the TtR-HEV shows 

somewhat fuel consumption reduction for all the drive cycles as compared to the 

conventional vehicle. This study forms the basis for advance research and 

developments. 
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ABSTRAK 

Laporan projek memberi tumpuan kepada seni bina jalan kenderaan elektrik 

hibrid. Kelebihan utama jenis ini seni bina antara banyak kelebihan lain berbanding 

dengan seni bina lain hibrid elektrik kenderaan adalah persamaan dengan kenderaan 

konvensional dan potensi sebuah roda teknologi didorong semua yang akan 

mengurangkan usaha tarikan yang diperlukan bagi setiap roda. Walau bagaimanapun, 

ia adalah penting untuk ambil perhatian bahawa interaksi gandar depan dan gandar 

belakang hanya boleh berlaku melalui jalan raya dan casis kenderaan. Ini 

memandangkan keperluan untuk mendapatkan maklumat yang mencukupi ke dalam 

bagaimana tork sebenar kedua-dua sumber tenaga dihasilkan, sifat itu aliran kuasa, 

cara terbaik untuk memenuhi permintaan tork dengan mengguna pakai kawasan 

operasi yang paling berkesan menggunakan model matematik tak linear yang dinamik. 

Kerja ini membentangkan model matematik Melalui Jalan Hibrid Kenderaan Electric 

(TtR-HEV), model yang terdiri daripada model dalaman pembakaran enjin, model 

motor elektrik, model transmisi, pendorongan kenderaan model dinamik, dan model 

bateri. Dua model yang berlainan telah dibina untuk simulasi MatLab / Simulink, yang 

TtR-HEV dan model kenderaan konvensional, model kemudiannya digunakan untuk 

menilai mencadangkan biasa reka bentuk mod aliran kuasa tanpa kerap mula / berhenti 

di mana-mana ia powertrain. Menggunakan kitaran memandu seragam yang berbeza, 

TTR-HEV menunjukkan agak penjimatan penggunaan bahan api untuk semua kitaran 

memandu berbanding kenderaan konvensional. Kajian ini membentuk asas untuk 

penyelidikan dan perkembangan awal. 
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CHAPTER 1 

INTRODUCTION 

1.1 The Need for Hybrid Electric Vehicle 

 The increasing existence of global warming is the fundamental cause of the 

fast changing, modern culture and technological development, which has led to the 

increase of emissions of harmful pollutants into the atmosphere. As established in 

[1], cars and trucks are responsible for almost 25% of CO2 emission and other major 

transportation methods account for another 12%. With immense quantities of cars on 

the road today, pure combustion engines are quickly becoming a target of global 

warming blame. Other potential alternatives to the world’s dependence on Internal 

Combustion Engine (ICE) are fuel cell vehicles, Electric Vehicles (EVs), and Hybrid 

Electric Vehicles (HEVs). 

Hybrid vehicles improve the fuel consumption and overall energy efficiency 

of the driveline due to the combination of multiple power sources of dissimilar 

nature. Furthermore, on board these vehicles are energy storage devices and electric 

drives that allow negative torque to be recovered during deceleration and standstill, 

and also operates the ICE only in the most efficient mode [2]. 
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1.2 Components of HEV 

The term hybrid electric vehicle refers to a vehicle with two sources of power 

and power conversion electronics. One being fossil fuel and the other battery. The 

former uses ICE design, while the latter uses electric motor for propulsion. The most 

compulsory source of energy of a HEV is electric battery, therefore, it can have 

combination of the following sources like gasoline ICE and battery, diesel ICE and 

battery, battery and fuel cell, battery and capacitor, battery and flywheel, and, battery 

and battery hybrids. The arrangement of electric motor and an ICE is one of the most 

commonly used propulsion in HEVs. The electric motor improves the energy 

efficiency, by providing positive torque and also operates as a generator during 

negative torque. Also, the engine is downsized, with the intention of ensuring that the 

average load demand from the vehicle is within the engine’s higher efficiency 

operating zone. This zone occurs during acceleration and urban driving. The design 

of HEVs for longer range and fuel economy highly depends on many advanced 

technologies of which power flow is significant. Figure 1.1 below explains the 

generic power flow design. The management of the duo sources determines the range 

of the vehicle [2]. 

 

Figure 1.1: Generic Power flow (Tobias et al., 2014) 
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As shown in figure 1.1, the traction forces delivered to the load is from the 

two sources of energy. As a means to extend the range, more extensive research and 

developments are required. This research intends to solve many key issues in the 

development of HEVs.  

Many studies and researches have been carried out on HEVs while most of 

the authors use different modelling and simulation approach as stated in [3], [4], [5], 

[6], [7] and [8] for performance evaluation, however, this research focuses on 

mathematical modelling of Through-the-Road Hybrid Electric Vehicles (TtR-HEVs) 

using first principle for adequate insight into the power trains interaction. 

1.3 Problem Statement 

 A study carried out by [9, 10], describes the potentiality of a TtR-HEV that 

has ICE at the front axle, and a centrally located electric motor connected to the rear 

axle, in terms of drivability and fuel consumption. Furthermore, the authors establish 

the effect of increased traction as a result of all driven wheels on performance. Due 

to the nature of the power sources present in TtR-HEVs, namely; ICE and Electric 

Machines (EMs), the authors use efficiency maps to show that the torque and power 

curves have alternating patterns in their traction delivery. It is concluded that the 

summation of torque can only occur in through the road scenario. The use of 

efficiency maps for the two power sources simplifies the dynamics that occur in the 

powertrain. For example, electric motor torque characteristic favours vehicle 

response, in that, it produces constant torque for the region lower than the base 

speed, this torque reduces hyperbolically with increase motor speed and also a 

constant power region for high motor speed [11, 12]. Unlike the electric motor, ICE 

operates optimally in high vehicle speed for constant traction. As stated above there 

is the need to gain adequate insight to the dynamic interaction of these two dissimilar 

power sources that can only interact through the road using nonlinear mathematical 

models to ascertain drivability and fuel consumption. This is because the engine and 
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the electric motors are not physically connected to each other, and also the traction 

delivered by the engine and electric motors. 

Modelling and simulation are absolutely compulsory for concept evaluation, 

prototyping, components re-sizing, and for the best control strategy to adopt in other 

to improve energy consumption. Though, prototyping and testing are other means of 

estimating them, it has hitherto proven expensive and complex in operation. Recent 

researches and studies have been carried out about modelling of HEVs, however, 

very little research has been done on the mathematical modelling of TtR-HEVs. 

Having established the problem statement, this research will focus on modelling of 

TtR-HEV (ICE on the front axle and two individual in-wheel motors at the rear) 

using first principle approach and power flow design strategies. 

In addition, to be able to achieve the gains of HEVs, the designs must be 

extensively modelled and refined using physics and thermodynamics laws for each 

sub system before emissions ratio and fuel economy can be implemented on a 

commercialized level. 

1.4 Research Questions 

This study will address the following issues; 

 

i. How to improve the overall efficiency of HEVs? 

ii. Which method can be used to improve the efficiency of HEVs? 

iii. How to design energy management system? 
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1.5 Objectives of Study 

 

 

The objectives of this research are as follows: 

 

i. To develop a mathematical model for a TtR-HEV using first principles 

ii. To design power flow strategies. 

iii. To compare the conventional vehicle and TtR-HEV in terms of fuel 

consumption and emission.  

 

 

 

1.6 Scope of Project 

This research focuses on TtR-HEV. The architecture of the TtR-HEV powertrain 

contains the ICE mounted on front axle for the front propulsion and a two right and 

left In-Wheel-Motors (IWM) for rear propulsion. The limitations of this work are 

stated below: 

i. The vehicle dynamics used will only consider the propulsion dynamics model 

of a TtR-HEV to test for the fuel consumption as compared to a conventional 

vehicle. 

i. Implementation of power flow design strategy in normal operation mode.  

ii. MATLAB/SIMULINK will be used to simulate the mathematical models. 

1.7 Significance of study 

 The primary objective of this study is to develop a mathematical nonlinear 

differential equations for the TtR-HEV, so as to gain insight to the intrinsic 

characteristics of the traction sources and nature of it power flow strategies. In 

accordance with this objective, the first contribution of this research is the 
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development of the mathematical models of TtR-HEV, which compare of the vehicle 

propulsion dynamics and powertrain dynamics with the purpose of establishing fuel 

savings over conventional vehicles.  

A second contribution is made in the area of power flow design strategies, 

because TtR-HEV can function as front wheel drive for a while during its operations, 

and at other times as rear wheel drive, and all wheels drive, depending on the load 

components conditions and driver’s request as it affect the efficient delivery of 

traction. 

1.8 Organization 

This project report consists of six chapters. Chapter 1 defines the research 

problem and presented the importance of HEVs technology. Chapter 2 reviews 

available classifications of various HEVs configurations and their actuating patterns 

are introduced based on different criteria which explains the power and energy 

demands from the load components on board energy storage system. Chapter 3 

describes the methodology adopted for achieving the objectives of this research and 

the sizing and selection of components for TtR-HEVs. Chapter 4 outlines the 

mathematical models used for the actual generation of the driveline torques, it also 

presents the formulation of the vehicle propulsion dynamics and the powertrain 

models used for simulations, and includes the torque matching technique for the 

power flow design. Chapter 5 provides the simulation results using MatLab/Simulink 

environment, firstly, for each sub model represented in the TtR-HEV, then a 

combined model which is used to compare the fuel consumed with a conventional 

vehicle, also, diagrams showing each power flow modes are presented. In Chapter 6, 

some closing remarks are made and future research guidelines are proposed. 

Appendix A provides a comprehensive list of the vehicle parameters used, 

and the MatLab m-file used. 
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