ANALYSIS AND MODELLING OF ULTRACAPACITOR

NOR AKMAL BINTI RAI

UNIVERSITI TEKNOLOGI MALAYSIA

ANALYSIS AND MODELLING OF ULTRACAPACITOR

NOR AKMAL BINTI RAI

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical – Power)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > JANUARY 2015

Dedicated to my beloved parents Rai bin Ngah Mat Ali & Rohani binti Jusoh

Siblings

Nor Arina binti Rai Nor Raidah binti Rai Muhamad Najmi bin Rai Muhamad Hisyam bin Rai

and

All my friends in MEP programme

for their support and encouragement

ACKNOWLEDGEMENT

First and foremost, I am very grateful to ALLAH S.W.T. for giving me life and chance to finish this project without much difficulty. Special thank goes to my helpful supervisor Dr. Mohd Junaidi bin Abdul Aziz. The supervision and support that he gave truly helps the progression and smoothness of completing this project. The cooperation is much indeed appreciated.

Secondly, I would like to express my warmest gratitude to my supportive lecturer, Dr. Zulkarnain Nordeen who has provided immeasurable support and guidance toward the completion of my research project.

My grateful thanks also goes to my family for their endless support and encouragement. My deepest gratitude also extend to all lecturers of University Teknologi Malaysia (UTM), for their guidance, ideas, and support in completing this master project. This project had opened my eyes on solving real problems and I was able to relate them with what I've been studied in UTM during the past 1 and half years.

A number of individuals in Electrical, Chemical and Science faculty were very helpful and understanding. I would like to acknowledge in particular for their contribution in this work.

Last but not least, I would like to thank to all my friends for the wise idea and tips throughout the project works. I'm very much enjoy working with all of you and thank you very much for all of the contributions and care.

ABSTRACT

Ultracapacitor is one of most popular device for energy storage system because of it capability that have high charge/discharge efficiency, can operate at high current, have long life cycle and no chemical reaction involve in store and release of energy. Ultracapacitor modelling is important for the electrical system analysis and equipment design. An efficient and high accuracy model can help electrical engineers thoroughly understand ultracapacitor's characteristics. A commercial ultracapacitor cell is characterized under standard procedures to assess its performance. This project focuses on the analysis and modelling of ultracapacitor cell characteristic. Two experiments involve which are charging/discharging test and AC Impedance test. The charge / discharge test is to determine ultracapacitor cell ability on charge and discharge performance. AC impedance test/ Electrochemical impedance spectroscopy (EIS) is to measure the complex impedance of ultracapacitor. The purpose of the test is to determine capacitance and equivalent series resistance. Based on experiment result, parameters and analysis, the equivalent circuit model of ultracapacitor is proposed. After that, the proposed model is simulated with MATLAB/Simulink and EIS Spectrum Analyser for verification. Then, the simulation result carried out is analysed and compared with experiment results. Based on ultracapacitor characteristic, the electrical circuit modelling was present in this thesis and can be used for power electronic, backup memory, heavy transportation application, hybrid electric vehicles and as power back up for UPS application.

ABSTRAK

Ultracapacitor ialah satu daripada peranti paling popular untuk sistem simpanan tenaga disebabkan ia mempunyai keupayaan untuk mengecas/menyahcas pada kecekapan yang tinggi, boleh beroperasi pada arus yang tinggi, mempunyai kitaran umur yang panjang dan tiada tindak balas kimia terlibat dalam penyimpanan dan pembebasan tenaga. Model Ultracapacitor penting untuk analisis sistem elektrik dan reka bentuk peralatan. Kecekapan tinggi dan kejituan model boleh membantu jurutera elektrik memahami sifat ultracapacitor. Sel ultracapacitor komersial akan digunakan untuk ujikaji berdasarkan standart prosedur untuk menilai prestasinya. Projek ini menumpukan kepada analisis dan model sel ultracapacitor. Dua eksperimen terlibat iaitu ujian mengecas/menyahcas dan ujian arus ulang-alik galangan. Ujian mengecas/menyahcas adalah untuk menentukan kebolehan prestasi sel ultracapacitor mengecas/menyahcas. Ujian arus ulang-alik galangan / Elektrokimia Galangan Spektroskopi adalah untuk mengukur nilai kompleks galangan ultaracapacitor. Tujuan ujian ialah adalah untuk menentukan nilai rintangan siri setara dan nilai capcitor. Berdasarkan keputusan eksperimen, parameter dan analisis, model litar elektrik setara ultracapacitor dicadangkan. Selepas itu, model cadangan disimulasikan dengan MATLAB / Simulink and EIS Spectrum Analyser untuk pengesahan. Kemudian, keputusan simulasi yang dijalankan dianalisis dan dibandingkan dengan hasil ujian. Berdasarkan sifat ultracapacitor melalui ujian yang dijalankan, model litar elektrik dicadangan didalam tesis ini dan boleh digunakan untuk alatan elektronik kuasa, aplikasi pengangkutan, kenderaan hibrid elektrik dan aplikasi untuk alat bantuan ingatan.

TABLE OF CONTENTS

TITLE

CHAPTER

	DEC	LARATION	ii
	DEDICATION		iii
	ACKNOWLEDGEMENT		iv
	ABSTRACT		V
	ABSTRAK		vi
	TABLE OF CONTENTS		vii
	LIST OF TABLES		Х
	LIST OF FIGURES		xi
	LIST OF ABBREVIATIONS		xiii
	LIST OF SYMBOLS		xiv
	LIST	FOF APPENDICES	XV
1	INTRODUCTION		1
	1.1	Overview	1
	1.2	Problem Statements	2
	1.3	Objectives of Project	2
	1.4	Scope and Aim of study	3
	1.5	Report Outlines	4
2	LITI	ERATURE REVIEW	5
	2.1	Introduction	5
	2.2	Ultracapacitor	5
	2.3	Structure of ultracapacitor	6

PAGE

2.3.1	Electrode	8
2.3.2	Electrolyte	9
2.3.3	Current Collector	10
2.3.4	Separator	10
2.4 Mode	el of Ultracapacitor	11
2.4.1	Basic Ultracapacitor Model	11
2.4.2	Classical Equivalent circuit of	
	Ultracapacitor	11
2.4.3	Three- Branch Model	13
2.4.4	Model based on Frequency Response	14
2.5 Sum	mary	16
METHODO	DLOGY	17
3.1 Intro	duction	17
3.2 Ultra	capacitor Cell	18
3.3 Char	ge/Discharge Test	19
3.3.1	Test Circuit	20
3.3.2	Test Equipment	20
	3.3.2.1 Power Supply	21
	3.3.2.2 Electronic Load	21
	3.3.2.3 National Instrument (NI)	22
3.3.3	Test Procedure	23
3.4 AC I	mpedance Test	24
3.4.1	Test Circuit	24
3.4.2	Test Equipment	25
	3.4.2.1Autolab PCSTAT302N	26
3.4.3	Test Procedure	27
3.5 Sum	nary	28
RESULT A	ND DISCUSSION	29
4.1 Intro	duction	29
4.2 Expe	riment Result	29
4.2.1	Charge/Discharge Test Result	30

AC Impedance Test Result

4.2.2

4.3	Equivalent Electrical Circuit Model of		
	Ultracapacitor	33	
4.4	Equivalent Electrical Circuit Model Simulation	34	
	4.4.1 Simulation for Charge/Discharge	34	
	4.4.2 Simulation for AC Impedance	36	
4.5	Analysis of Experiment Result and Model		
	Simulation Result	38	
4.6	Limitation during AC Impedance Test		
CONCLU	USION	40	
5.1	Conclusion of the Project		
5.2	Suggestions and Recommendations		
5.3	Future Works		

REFERENCES	43
Appendix A	46

5

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	General technical data of Maxwell K2	19
	series BCAP3000P270 ultracapacitor cell	

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Type of electrochemical energy store [3]	6
2.2	Ultracapacitor physical structure [2]	7
2.3	Electrode layer in Ultracapacitor [5]	9
2.4	Illustration of carbon-carbon symmetrical	
	Ultracapacitor	11
2.5	Basic ultracapacitor model	12
2.6	Classical Equivalent circuit of ultracapacitor	12
2.7	Three-branch model	13
2.8	Ladder circuit model	14
2.9	Advance equivalent circuit for ultracapacitor	15
2.10	Ultracapacitor model based on temperature,	
	voltage and frequency behaviour	15
3.1	Maxwell k2 series BCAP3000P270 ultracapacitor cell	18
3.2	Circuit for charge/discharge test	20
3.3	Power supply ELECTRO-AUTOMATIK	21
3.4	Itech IT8514C Electronic load	22
3.5	NI 9219- 24 bit analog input.	22
3.6	Charge/discharge test	23
3.7	AC impedance test circuit	24
3.8	Autolab PGSTAT302N	26
3.9	AC Impedance test of ultracapacitor	27
4.1	Input current and output voltage	30
4.2	Nyquist plot of 3000F Maxwell ultracapacitor	31
4.3	Nyquist plot in MATLAB	33

4.4	Capacitance verses frequency value of ultracapacitor	34
4.5	Equivalent circuit model of ultracapacitor	35
4.6	Simulation Model for charge/discharge	35
4.7	Simulation Model element value of ultracapacitor	
	for charge/discharge	35
4.8	Simulation result of charge/discharge	36
4.9	Experiment result (nyquist plot) in EIS Spectrum	
	Analyser	37
4.10	Simulation result and parameter value of simulation	
	result of AC impedance test	37
4.12	Experiment and simulation result for charge/discharge	38

LIST OF ABBREVIATIONS

EDLC	-	Electrical Double Layer Capacitor
AC	-	Alternating Current
EIS	-	Electrochemical Impedance Spectroscopy
ESR	-	Electrical Series Resistance
H2SO4	-	Sulphuric Acid
КОН	-	Potassium Hydroxide/ calcium hydroxide
EPR	-	Electrical Parallel Resistance
NI	-	National Instrument
PGSTAT	-	Potentiostart/Galvanostart
FRA	-	Frequency Response Analyser
Ι	-	Current
V	-	Voltage
Р	-	Power
UC		Ultracapacitor

LIST OF SYMBOLS

Q	-	Charge
R	-	Resistance
L	-	Inductance
С	-	Capacitance
Z	-	Impedance
π	-	Pi (3.141593)
f	-	Frequency
Ω	-	Ohm
F	-	Farad

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A Maxwell k2 series BCAP3000P270 ultracapacitor 44 Cell data sheet

CHAPTER 1

INTRODUCTION

1.1 Overview

Nowadays, ultracapacitor become an alternative and complementary device for energy storage system. Its ability to fast charge/discharge and long life cycle give an advantage of ultracapacitor in a lot of electrical and electronic application. Ultracapacitor also known as supercapacitor or electric double layer capacitor (ELDC) are one type of an electrochemical device that stores electrical charge in the electrical double layer surface.

The first electrical device using double layer charge storage was invented in 1957 by H.I. Becker from General Electric. Unfortunately, Becker's device was not practical because it is similar to a flooded battery with both electrodes need to immerse in a container of electrolyte and this device was never been commercialized [1]. As a rapid development in technology, a lot of researches have been done to produce an electric double layer capacitor. Varies type of ultracapacitor have been develop based on its application as electrical energy storages device in power electronic system, industrial application, heavy transportation application, hybrid electric vehicles, UPS system and memory backup application. Ultracapacitor have become a popular device in many applications because of its characteristic that give advantages over other energy storage device. The energy density of the existing ultracapacitor range is about 1 to 10 Wh/kg and its power density range typically of 2000 to 20000 W/kg as compared to electrochemical batteries that have an energy density range about 100 Wh/kg but lower in power density range 100 to 500W/kg [2]. Furthermore, ultracapacitor have high efficiency, which can stand at higher current and temperature, have a long life cycle and an environmental friendly because it's not involve in any chemical reaction while store electrical energy as compare to other energy storage device.

1.2 Problem Statement

Ultracapacitor are being used in many applications in electrical and electronic application, as an energy storage device. Ultracapacitor modelling plays an important role for the electrical system analysis and equipment design. The ultracapacitor model can provide detail information and equivalent electrical circuit modelling of energy storage device. An efficiency and high accuracy model can help electrical engineer to understand ultracapacitor characteristics.

1.3 Objective

The main objective of this project is:

• To study the characteristic of ultracapacitor.

- To performed in lab testing for ultracapacitor using charge/discharge and AC Impedance test.
- To proposed an equivalent electrical circuit model of tested ultracapacitor.
- To simulate equivalent electrical circuit model using MATLAB/Simulink and EIS Spectrum Analyser.

1.4 Scope and Aim of Study

These projects focus on modelling of ultracapacitor characteristic. This project needs in lab test and model of the ultracapacitor equivalent circuit. It involves two parts which are in lab test of ultracapacitor characteristic and modelling of the ultracapacitor using the equivalent electrical circuit model. There are two types of in lab test require which is charge/discharge test and AC impedance test. The charge / discharge test is to determine ultracapacitor cell ability on charge and discharge performance. AC impedance test/ Electrochemical impedance spectroscopy (EIS) is to measure the complex impedance of ultracapacitor. Based on experiment result, parameters and analysis, the equivalent circuit model of ultracapacitor is proposed. After that, the proposed model is simulated with MATLAB/Simulink and EIS Spectrum Analyser for verification. Then, the simulation result carried out is analysed and compared with experimental results.

1.5 Report Outlines

The thesis consists of five chapters. In the first chapter, it discusses the project background, problem statement, objectives, scope and report outline.

Chapter 2 presents background, characteristic of ultracapacitor, related work and an overview of ultracapacitor model and parameter identification method. The principle of ultracapacitor structure and material are explained in detail in this chapter.

In chapter 3, the focus is on detail description for in lab test carried out. It is clear and concise of work performed. This chapter describes the test circuit and method used to obtain lab data which will be used to develop ultracapacitor model.

In chapter 4, the lab result and equivalent electrical circuit modelling of ultracapacitor is attached. This chapter represented in the form of diagrams, waveform of test result and simulation result of ultracapacitor model. The comparison and analysis are made in order to achieve objectives. Analysis of data, such as discusses on the outcome of research in relation to the result are obtained.

Lastly, the conclusion about the project is written on the fifth chapter. It is also provide suggestions and recommendations for future work.

REFRENCES

- J.R. Miller. (2007). A brief history of supercapacitors, Battery and Energy Storage Technology, History of Technology series. Autumn 2007 issue
- Peter J. Grbovic. (2014). Ultra-Capacitors in Power Conversion System, Applications, Analysis and Design from Theory to Practice. IEEE Press
- 3. John M.Miller. (2011). Ultracapacitor Application.IET power and energy series.
- 4. Francois Beguin, Elzbieta Fackowiak. (2013). Supercapacitor: Material, System and Application. Wiley-VCH.
- Aiping Yu, Victor Chabot, Jiujun Zhang. (2012). Electrochemical Supercapacitors for Energy Storage and Delivery Fundamentals and Applications. CRC Press.
- Yang Fuyuan, Lu Languang, YangYuping, Yongsheng He. (2010).Characterization, analysis and modelling of an ultracapacitor. World Electric Vehicle Vol.4.
- R.L. Spyker and R.M. Nelms. (July, 2000). Classical equivalent circuit parameters for a double-layer capacitor. IEEE Trans. on Aerospace and Electronic Systems, vol. 36, pp. 829-836.
- L. Zubieta and R. Bonert. (Jan/Feb 2000). Characterization of double-layer capacitor for power electronics application. IEEE Trans. on Industry Applications, vol. 36, pp. 199-205.
- L. Shi, M.L. Crow (2008). Comparison of ultracapacitor electric circuit models. Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century IEEE Conference Records.
- Ling ling Du. (2009). Study On Supercapacitor Equivalent Circuit Model for Power Electronic Applications. 2nd International conference on power electronic and intelligent transportation system.
- Xiaomeng Li, Mariesa L.Crow. (2009). Ultracapacitor Frequency Analysis and its Equivalent Circuit Model. IEEE

- S.Buller, E.Karden, D.Kok, R.W.De Doncker. (2001). Modelling the Dynamic Behaviour of Supercapacitors Using Impedance Spectroscopy. IEEE
- F. Rafika, H. Gualousb, R. Gallayc, A. Crausaza, A. Berthonb. (2007). Frequency, thermal and voltage supercapacitor characterization and modelling. Journal of Power Sources 165 928–93
- Maxwell Technologies. Datasheet K2 Series Ultracapacitor. Available online athttp://www.maxwell.com/products/ultracapacitors/docs/k2series_ds_10153 70-4.pdf
- 15. Maxwell Technologies. Ultracapacitor product guide. 2001. available online at www.maxwell.com/ultracapacitors/manuals/ultracap_product_guide.pdf
- Idaho National Engineering and Environmental Laboratory (INEEL).
 (September 21, 2004). Freedom CAR Ultracapacitor Test Manual. DOE/NE-ID-11173 Revision 0.
- 17. British Standard (2006). Fixed electric double-layer capacitors for use in electronic equipment Part 1: Generic specification. BS EN 62391-1:2006
- British Standard (2006). Fixed electric double-layer capacitors for use in electronic equipment — Part 2: Sectional specification — Electric double-layer capacitors for power application. BS EN 62391-2:2006
- BSI Standards Publication (2010). Electric double-layer capacitors for use in hybrid electric vehicles — Test methods for electrical Characteristics, BS EN 62576:2010.
- J.R Miller, A.F. Burke. Electric Vehicle Capacitor Test Procedures Manual, Revision 0. Idaho National Engineering
- 21. Elektro-Automatik. Programmable built in power supply. Available online at http://www.pewa.de/datenblatt/dbl_ea_eapsi800rserie_deutsch_englisch.pdf
- 22. Itech. Electronic load IT8514C 120V / 240A / 1200W data sheet. (2009). Available online at http://www.itech.sh/en/print.jsp?pid=18%20 (1%20of%202) 2009-11-10%2013:36:21
- 23. National Instruments. (2010). 24 bit Universal analog input, NI 9219. Available online, http://sine.ni.com/ds/app/doc/p/id/ds-198/lang/en
- 24. Evgeniji Barsoukov, J. Ross Macdonald. (2005). Impedance Spectroscopy Theory, Experiment and Application. Wiley- Interscience.

- Vadim F. Lvovich. (2012). Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena, Wiley-John Wiley & Sons, Inc. Hoboken, New Jersey.
- B.E. Conmay. (1999). Electrochemical Supercapacitor; Scientific and Technology Application. Kluwer Academic Publishers, New York.
- 27. Autolab Product Review. http://www.metrohmautolab.com/Products/Echem/NSeriesFolder/NSeries
- F.Rafik, H.Gualous, R.Gallay, A.Crausaz, A.Berthon. (2006). Supercapacitor Characterization for Hybrid Vehicle Application. IEEE IPEMC.
- 29. Biologic science Instrument Application note#5. http://www.bio-logic.info/assets/app%20notes/20101105%20-%20application%20note%205.pdf
- 30. Autolab application note. http://www.ecochemie.nl/Applications/