
A MATRIX INVERSION HARDWARE ARCHITECTURE BASED ON GAUSS-

JORDAN ELIMINATION FOR MIMO APPLICATIONS.

HAMMAM ORABI

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Electrical-Electronics and Telecommunications)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

JUNE 2014

 iii

To Father, Mother, Brothers, Sisters,

Sidra,

Friends,

& to the Falling Leaves of Syria.

 iv

ACKNOWLEDGEMENT

I would like to start by expressing my sincere appreciation to my supervisor,

Dr. Rabia Bakhteri who did not withhold any effort in supporting me by help, advice,

and guidance throughout both of the project’s phases; Research Project Proposal and

Project Thesis.

I would like to extend my gratitude to UTM’s FKE staff and lecturers for

providing me with enthusiasm as well as knowledge, of which I needed both to finish

this work.

 v

ABSTRACT

Digital Communications require faster and more dedicated electronic plat-

forms to satisfy its real time performance. Highly computational algorithmic kernels

can create a bottleneck to the systems where it is implemented on, due to the time it

take to provide outputs, which reduces the throughput of the overall communication

system. Fully Dedicated Hardware Architectures provide solutions to the speed crisis,

since they provide the ability of performing parallel computations. Matrix Inversion

is a complex algorithm that is implemented in MIMO systems. Since software solu-

tions are not fast enough to satisfy the speed requirements, hardware solutions stood

up to the challenge. In this project, a fully dedicated hardware architecture to find

matrix inversion using Gauss-Jordan Elimination algorithm is presented, complex

arithmetic operation is performed to match the nature of the elements of estimated

propagation matrix in MIMO systems. The design is parameterized and universal for

any complex matrix. Developing the design was done using SystemVerilog HDL,

while simulation was done through Altera ModelSim. Software kernels were done on

MATLAB for comparison purposes. The proposed architecture performance shows

its advantage over software based kernels. Further comparisons have been done with

previous designs for a variety of matrix sizes.

 vi

ABSTRAK

Komunikasi digital memerlukan platform elektronik yang lebih cepat dan lebih

khusus untuk memenuhi prestasi masa sebenar. Kernel algoritma sangat pengiraan

boleh membuat kesesakan kepada sistem di mana ia dilaksanakan pada , kerana masa

yang diambil untuk menyediakan output, yang mengurangkan daya pemprosesan sis-

tem komunikasi keseluruhan. Perkakasan Seni Bina sepenuhnya Dedicated menye-

diakan penyelesaian kepada krisis kelajuan, kerana mereka memberikan keupayaan

melaksanakan pengiraan selari. Matrix penyongsangan adalah algoritma kompleks

yang dilaksanakan dalam sistem MIMO. Sejak penyelesaian perisian tidak cukup pan-

tas untuk memenuhi keperluan kelajuan, penyelesaian perkakasan menyahut cabaran

itu. Dalam projek ini, seni bina perkakasan berdedikasi sepenuhnya untuk mencari

matriks penyongsangan menggunakan algoritma Gauss -Jordan Penghapusan diben-

tangkan , operasi aritmetik kompleks dijalankan untuk menyesuaikan unsur unsur-un-

sur dianggarkan matriks perambatan dalam sistem MIMO. Reka bentuk adalah pa-

rameterized dan sejagat untuk sebarang matriks kompleks. Membangunkan reka ben-

tuk telah dilakukan dengan menggunakan SystemVerilog HDL. Kernel perisian telah

dijalankan ke atas MATLAB untuk tujuan perbandingan. Prestasi seni bina yang di-

cadangkan menunjukkan kelebihan ke atas kernel perisian berasaskan. Perbandingan

selanjutnya telah dilakukan dengan reka bentuk sebelum ini untuk pelbagai saiz

matriks.

 vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES x

 LIST OF FIGURES xi

 LIST OF SYMBOLS xiii

 LIST OF APPENDICES xiv

1 INTRODUCTION

 1.1 Project Background 1

 1.2 Problem Statement 4

 1.3 Objective 5

 1.4 Scope 6

 1.5 Project Overview 7

 1.6 Thesis Structure 9

2 LITERATURE REVIEW

 2.1 Introduction 10

 2.2 Numerical Methods for Matrix Inversion 10

 2.3 Gaussian Elimination 13

 viii

 2.4 Row Pivoting 14

 2.5 Gauss-Jordan Elimination 15

 2.6 Comparison between Different Methods 16

 2.7 Previous works 17

2.7.1 FPGA Implementation Of Floating-Point

Complex Matrix Inversion Based On Gauss-

Jordan Elimination (Moussa et al., 2013)

17

2.7.2 On the Design of an On-line Complex Ma-

trix Inversion Unit (McIlenny and Ercego-

vac, 2005)

18

2.7.3 A Suitable FPGA Implementation Of Float-

ing-Point Matrix Inversion Based On

Gauss-Jordan Elimination (Jacobi et al.,

2011)

18

 2.8 Summary 19

3 METHODOLOGY

 3.1 Introduction 20

 3.2 Design Life Cycle 20

 3.3 Project Flow 23

 3.4 Data Path Modules for Real Numbers 24

 3.4.1 Pivoting 26

 3.4.2 Memory Address Generator 26

 3.4.3 Normalization 30

 3.4.4 Elimination 32

 3.5 Control Unit 35

 3.6 Extension for Complex Numbers 36

 3.7 Optimization for Speed 38

 3.7.1 Optimized Modules for Real Numbers 40

 3.7.2 Optimized Modules for Complex Numbers 43

 3.8 Summary 43

4 RESULTS AND DISCUSSION

 4.1 Introduction 45

 4.2 Key Performance Indicators 46

 ix

 4.2.1 Look Up Tables 46

 4.2.2 Embedded 9-bit Multipliers 47

 4.2.3 M9K units utilization 48

 4.2.4 Clock cycle count 48

 4.3 Comparison with Software Approach 50

 4.4 Comparison with previous Hardware Architectures 51

 4.4.1 Comparison with Jacobi et al. (2011) 52

 4.4.2 Comparison with (Moussa et al. 2013) 52

 4.5 Summary 56

5 CONCLUSION

 5.1 Conclusion 57

 5.2 Future Works 58

REFERENCES 59

Appendices A-C 61-71

 x

 LIST OF TABLES

TABLE NO. TITLE PAGE

3.1 Pivoting states and operations 27

3.2 Detailed events of pivoting operation 29

3.3 Control State Table of the CU 40

4.1 Summary of comparison against Jacobi et al. (2011) 56

4.2 Summary of comparison against Moussa et al. (2013) 56

 xi

 LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 MIMO-OFDM Transmitter 2

1.2 MIMO-OFDM Reciever 2

1.3 Plot of CPU time vs matrix’s size 5

1.4 Top level module of G-J 7

3.1 Development Life Cycle of the project 21

3.2 Hierarchal modular concept for G-J algorithm 22

3.3 Project’s Progress phases 23

3.4 The Data Path for HA.R.A 25

3.5 Memory Initialization File for the Mem_RAM 25

3.6 FSM of Pivoting Module 28

3.7 Functional simulation for Pivoting module 28

3.8 Functional Block Diagram of MAG unit 29

3.9 Top Level Module of Normalization module 30

3.10 Data path unit of Normalization module 31

3.11 Control Unit of Normalization module 32

3.12 Elimination top level module 33

3.13 Data path unit of Elimination module 34

3.14 FSM of Elimination CU 34

3.15 FSM of the main CU 37

3.16 Data path for the hardware architecture of complex num-

bers-HA.C.A

39

3.17 Complex Divider 39

3.18 Complex Normalization Data Path Unit 41

3.19 Complex Multiplier 41

 xii

3.20 Complex Elimination Data Path Unit 42

3.21 DU of HA.R.S 42

3.22 DU of HA.C.S 44

4.1 Hardware architectures designed in this project 45

4.2 LUT utilization for different matrix sizes (HA.R.A and

HA.R.S)

46

4.3 LUT utilization for different matrix sizes (HA.C.A and

HA.C.S)

47

4.4 9-bit Embedded Multipliers utilization for all HAs 47

4.5 M9K utilization for different matrix sizes 48

4.6 Clock Cycle Count for HA.R.A and HA.R.S 49

4.7 Clock Cycle Count for HA.C.A and HA.C.S 49

4.8 Total Latency for MATLAB, HA.R.A, and HA.R.S 50

4.9 Total Latency for MATLAB, HA.C.A, and HA.C.S 51

4.10 Latency comparison between Jacobi et al. (2011) and

HA.R.S

52

4.11 LUTs consumption comparison between Jacobi et al.

(2011) and HA.R.S

53

4.12 LUTs consumption comparison between Moussa et al.

(2013) and HA.C.A

54

4.13 Clock cycle count comparison between HA.C.S and

Moussa et al. (2013)

54

4.14 Memory kinds and numbers used in our design and

Moussa et al. (2013)

55

 xiii

 LIST OF SYMBOLS

G-J Gauss-Jordan

HA Hardware Architecture

HA.C.A Hardware Architecture for Complex Numbers optimized

for Area

HA.R.A Hardware Architecture for Real Numbers optimized for

Area

HA.R.S Hardware Architecture for Real Numbers optimized for

Speed

HA.R.S Hardware Architecture for Complex Numbers optimized

for Speed

ICI Inter Carrier Interference

ISI Inter Symbol Interference

MIMO Multiple input multiple output

OFDM Orthogonal Frequency Division Multiplexing

𝐻 Complex Propagation Matrix

𝑁𝑡 Number of transmitted signals

𝑁𝑡 Number of received signals

𝑊 Zero mean complex Additive White Gaussian Noise

𝑋 Transmitted symbols

𝑌 Received vector from all the 𝑁𝑡 receiver’s antennas

 xiv

 LIST OF APPENDICES

APPENDIX TITLE PAGE

A - MATLAB Source Code 61

B - C Source Code 63

C SystemVerilog DU Source Code 67

CHAPTER 1

INTRODUCTION

1.1 Project Background

Orthogonal Frequency Division Multiplexing (OFDM) is becoming a very

popular multi-carrier modulation technique for transmission of signals over wireless

channels. OFDM divides the high-rate stream into parallel lower rate data and hence

prolongs the symbol duration, thus helping to eliminate Inter Symbol Interference

(ISI). It also allows the bandwidth of subcarriers to overlap without Inter Carrier In-

terference (ICI) as long as the modulated carriers are orthogonal. OFDM therefore is

considered as an efficient modulation technique for broadband access in a very disper-

sive environment.

Recently, high data rate and strong reliability in wireless communication sys-

tems are becoming the dominant factors for a successful exploitation of commercial

networks. MIMO-OFDM (multiple input multiple output orthogonal frequency divi-

sion multiplexing), a new wireless broadband technology, has gained great popularity

for its capability of high rate transmission and its robustness against multi-path fading

and other channel impairments. The block diagram of MIMO-OFDM transmitter and

receiver is shown in Figure 1.1 and 1.2 respectively.

 2

M-Array

Mapping

Space

Time

Coding

Pilot

Insertion

Pilot

Insertion

Pilot

Insertion

IDFT

IDFT

IDFT

Add CP

Add CP

Add CP

X1 (k)

X2 (k)

XNT (k)

x1 (n)

x2 (n)

xNT (n)

Input

Data

Figure1.1 MIMO-OFDM Transmitter

Remove

CP

Remove

CP

Remove

CP

DFT

DFT

DFT

Channel

Estimation

Zero

Forcing

Reciever

Demapper

y1 (n)

y2 (n)

yNT (n)

Y1 (k)

Y2 (k)

YNR (k)

Output

Data

Matrix

Inverse

H1

H2

HNT

H

H-1

Figure1.2 MIMO-OFDM Reciever

As a MIMO signaling technique, 𝑁𝑡 different signals are transmitted simulta-

neously over 𝑁𝑡 × 𝑁𝑟 transmission paths, and each of those 𝑁𝑟 received signals is a

combination of all the 𝑁𝑡 transmitted signals and the distorting noise. The received

signal will be the convolution of the channel and the transmitted signal. After remov-

ing the cyclic prefix at the receiver’s side, the output of FFT module, as the demodu-

lated received signal, can be expressed in the matrix form equation as following (as-

suming that the channel is static during an OFDM block):

𝑌 = 𝐻𝑋 + 𝑊 (1)

 3

Equation (1) can be further elaborated in matrix form as equation (2).

[

𝑌1

𝑌2

𝑌3

⋮
𝑌𝑁𝑟]

=

[

𝐻1,1 𝐻1,1 ⋯ 𝐻1,𝑁𝑟

𝐻2,1 𝐻1,1 ⋯ 𝐻1,𝑁𝑟

𝐻3,1 𝐻1,1 ⋯ 𝐻1,𝑁𝑟

⋮ ⋮ ⋱ ⋮
𝐻𝑁𝑟,1 𝐻𝑁𝑟,1 ⋯ 𝐻1,𝑁𝑟]

[

𝑋1

𝑋2

𝑋3

⋮
𝑋𝑁𝑡]

+

[

𝑊1

𝑊2

𝑊3

⋮
𝑊 𝑁𝑡]

 (2)

Where 𝑌 is the received vector from all the 𝑁𝑡 receiver’s antennas, 𝐻 is the

channel transform function (Complex Propagation Matrix), 𝑋 represents the transmit-

ted symbols from all the transmitting antennas for subcarrier 𝑘, 𝑊 represents zero

mean complex Additive White Gaussian Noise. The transfer function of the matrix-

valued channel impulse response is given by

𝐻(𝑒𝑗2𝜋𝜃) = ∑𝐻𝑙

𝐿−1

𝑙=0

𝑒−𝑗2𝜋𝑙𝜃, 0 ≤ 𝜃 < 1 (3)

The data symbols 𝑋̂ are then estimated by linear detection algorithm such as

Zero Forcing and is given by:

𝑋̂ = 𝐻−1𝑌 (4)

While (4) has to be evaluated at the symbol rate, the channel inverses 𝐻−1can be pre-

computed and have to be updated only when the channel changes (Borgmann, and

Bölcskei, 2004).

From the numerous matrix inversion algorithms that exist, Gauss-Jordan Al-

gorithm (G-J) is characterized as a simple, efficient, direct, parallelizable, and univer-

sal algorithm to find the inverse of any kind of square matrices (Duarte et al., 2009).

Although its higher complexity (O(n3)) in contrast to other software algorithms (e.g.

Strassen (O(n2.807)) and Coppersmith-Winograd (O(n2.376)), G-J is very important for

developing practical architectural implementations, since the bottleneck of Von-Neu-

mann architecture can be avoided (Jacobi et al., 2011).

 4

G-J Elimination requires simple arithmetic operations only i.e. Addition/Sub-

traction, Multiplication, and Division. In comparison, other numerical matrix inver-

sion methods require more complicated operations, such as square root operation as in

QR decomposition by Gram-Schmidt Orthogonalization, and sine and cosine opera-

tions as in QR decomposition by Rotation (Pozrikidis, 2008).

1.2 Problem Statement

Matrix Inversion is one of the most costly computational operations to be per-

formed either in software or hardware (Hanzo et al., 2010). It has vast implementa-

tions in many of nowadays technologies, especially in MIMO systems such as OFDM

MIMO (Moussa et al., 2013) and Long-Term Evolution (LTE) MIMO receivers to

remove the effect of the channel on the received signal (Yan et al., 2010). It can be

used as a pre-coding stage in OFDM MIMO in order to cancel the interference at the

Base station (Cho et al., 2010).

This operation is significant in MIMO systems because of its good perfor-

mance in high data rates applications, as it is a straight forward concept without itera-

tions (Haustein et al. 2002). Software based matrix inversion modules suffer from

long latency because of the complicated decoding of the executed instruction, and be-

cause of Von-Neumann bottleneck, which is a result of sharing the same memory for

data and instructions. Figure 1.3 depicts the time required to perform matrix inversion

on matrices of different sizes. The long latency time (0.02 second for a 36x36 matrix)

makes the utilization of this technique less desirable in real time application.

In IEEE 802.11a-1999, fifty two OFDM subcarriers are used. Of the fifty two

subcarriers, 48 are for data and 4 are for pilot subcarriers. Performing Matrix Inversion

 5

in a system that uses such large number of subcarriers is a critical challenge of opti-

mizing the design for speed and cost (Moussa et al., 2013).

On the other hand, a regular (direct) method of matrix inversion such as

Cramer’s require evaluation of (𝑁 + 1) × 𝑁 × 𝑁 determents. So for a 10x10 system,

359 million multiplications have to be performed (Cho et al., 2010). For a 20x20

system the number of multiplications is factorial(21). A fast computer will do the task

in 1600 years (Turner, 2000).

Figure 1.3 CPU time vs matrix’s size

0 5 10 15 20 25 30 35 40
0

0.005

0.01

0.015

0.02

0.025
Plot of CPU time vs Matrix dimension

C
P

U
 t

im
e
 (

s
e
c
)

Matrix Size

 6

1.3 Objective

The objective of this project is to build an accelerated, scalable, and low area

cost hardware architecture that performs matrix inversion for complex numbers, using

the Gauss–Jordan method. The architecture should accomplish the complex inversion

in a better time than software based approaches. It should be able to operate on any

matrix regardless of its size. Finally, it should achieve better area consumption in

comparision to some other hardware architectures.

1.4 Scope

The proposed system is responsible for finding the inverse of the square com-

plex propagation matrix in MIMO systems. Numerical computation methods are ad-

dressed and compared to both numerical and regular methods.

Hardware Description Languages are the medium of implementing these algo-

rithms, such as Verilog and SystemVerilog.

The following software are used in this project:

 MATLAB 2013 is used for benchmarking and for results verification.

 Quartus II is used for modelling the system in Verilog and SystemVer-

ilog.

 ModelSIM Altera is used for simulating the design and for acquiring

performance statistics.

The Field Programmable Logic Array (FPGA) platform is Altera DE2-115 De-

velopment and Education Board, powered by Altera Cyclone IV E FPGA.

 7

Single precision floating point (IEEE 745 standard) Complex Addition/Sub-

traction, Multiplication and Division operations are used in the Inversion process; this

is necessary since the estimated matrix has complex values.

1.5 Project Overview

The top level functional block diagram is shown in Figure (1.4). The system

will receive the complex matrix entries and find the inverse upon setting start signal

high. The results will be ready after the done signal is set, while the fail signal indicates

that the input matrix is a singular matrix, thus it has no inverse.

GAUSS-JORDAN MATRIX

INVERSE TOP MODULE
Â
nxn

Â
nxn

start reset done fail

Figure 1.4 Top level module of G-J

The design is made up of two basic modules, the Control Unit (CU) and the

Data-path Unit (DU). CU has the main Finite State Machine (FSM) controller, and

controls the sequence of the operations and processes of G-J. The DU contains the

 8

basic modules necessary for G-J, named: Pivoting, Normalization, Elimination, Stor-

age, Memory Address Generator (MAG), and several counters designated for generat-

ing the indices of the matrix’s elements. Figure (1.5) shows the CU and DU organi-

zation of G-J top level module.

A tradeoff between the area cost and speed will be done, resulting in 4 different

designs, 2 for each real and complex plane, each design is optimized either for speed

or area requirements.

The 4 different developed designs performance will be evaluated: Real (opti-

mized for area and speed) and Complex (optimized for area and speed). The aspects

of evaluation are the number of consumed clock cycles to finish the operation, latency,

Look Up Tables (LUTs) consumption, M9K memory unit utilization, and RAM usage.

GAUSS JORDAN

CONTROL UNIT

PIVOTING

CU

NORMAILZATION

CU

ELIMINATION

CU

STORAGE UNIT

PIVOTING

DU

NORMAILZATION

DU

ELIMINATION

DU

Figure (1.5) CU and DU of G-J

 9

1.6 Thesis Structure

This thesis consists of five chapters. Chapter one has described the background

of the project, problem statement, objectives, scope and project overview. Chapter

two describes the theory and background of Gauss-Jordan Elimination method as well

as previous works done in this field. Chapter three explains the research methodology

used in this thesis including the system architecture. Chapter four shows the experi-

mental results followed by analysis and discussion. Chapter five states the conclusion

and the possible future improvements. Finally, Appendices A, B, and C contains the

MATLAB, C, and SystemVerilog source code of G-J algorithm respectively.

REFERENCES

Bagadi, K. Y., & Das, S. (2010). MIMO-OFDM Channel Estimation using Pilot Car-

ries. International Journal of Computer Applications (0975 – 8887) Volume 2 –

No.3, May 2010

Borgmann, M. and Bölcskei, H. (2004). Interpolation-Based Efficient Matrix Inver-

sion for MIMO-OFDM Receivers. Communication Technology Laboratory,

Swiss Federal Institute of Technology

Cho, Y. S., Kim, J., Yang, W. Y. and Kang, C. G. (2010). MIMO-OFDM Wireless

Communications with MATLAB. John Wiley & Sons, Ltd, Chichester, UK. doi:

10.1002/9780470825631.refs

Duarte, R., Neto, H. and Vestias, M. (2009). Double-precision gauss-jordan algorithm

with partial pivoting on FPGAs. 12th Euromicro Conference on, aug. 2009, pp.

273-280.

Gene H. Golub and Charles F. Van Loan (1996). Matrix computations. (3rd Edition).

Johns Hopkins University Press Baltimore, MD, USA.

Hanzo, L., Akhtman, Y., Wang, L. and Jiang, M. (2010) Bibliography, in MIMO-

OFDM for LTE, Wi-Fi and WiMAX, John Wiley & Sons, Ltd, Chichester, UK.

doi: 10.1002/9780470711750.biblio

Haustein, T., Helmolt, C., Jorswieck, E., Jungnickel, V. and Pohl, V. (2002). Perfor-

mance of MIMO systems with channel inversion. in Proc. IEEE Vehicular Tech-

nology Conference, VTC Spring, Birmingham, AL, May 2002, pp. 35–39.

Irturk, A., Benson, B., Mirzaei, S. and Kastner, R. (2008). An FPGA Design Space

Exploration Tool for Matrix Inversion Architectures. SASP 2008: 42-47.

 60

Jacobi, R., Arias-Garcia, J., Llanos, C. and Ayala-Rincon, M. (2011). A suitable

FPGA implementation of floating-point matrix inversion based on gauss-jordan

elimination. VII Southern Conference on, April 2011, pp. 263-268.

Jacobi, R., Arias-Garcȋa, J., P., Llanos, C. H., & Ayala-Rincön, M. (2011). A Suitable

FPGA Implementation Of Floating-Point Matrix Inversion Based On Gauss-Jor-

dan Elimination.

McIlhenny, R.and Ercegovac, M. (2005). On the Design of an On-line Complex Ma-

trix Inversion Unit. Proc. 39th Asilomar Conference on Signals, Systems and

Computers, 5pps., 2005.

Moussa, S., Abdel Razik, A. M., Dahmane, A. O., & Hamam, H. (2013) FPGA Im-

plementation Of Floating-Point Complex Matrix Inversion Based On Gauss-Jor-

dan Elimination (2013). 26th IEEE Canadian Conference Of Electrical And

Computer Engineering (CCECE)

Pozrikidis, C. (2008). Numerical computation in science and engineering. Oxford: Ox-

ford University Press.

Senthilvelan, M. ; Iancu, D. ; Glossner, J. ; Moudgill, M. and Schulte, M. (2007).

Software Solutions for Converting a MIMOOFDM Channel into Multi-

pleSISO-OFDM Channels. Third IEEE International Conference on Wireless

and Mobile Computing, Networking and Communications, 2007. WiMOB

2007.

Turner, Peter R. (2000.). Guide 2 Scientific Computing. CRC Press, 2000.

Yan, M., Feng, B. and Song, T. (2010). On Matrix Inversion for LTE MIMO Applica-

tions Using Texas Instruments Floating Point DSP. Signal Processing (ICSP),

2010 IEEE 10th International Conference on.

