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ABSTRACT 

 

 

 

Digital Communications require faster and more dedicated electronic plat-

forms to satisfy its real time performance.  Highly computational algorithmic kernels 

can create a bottleneck to the systems where it is implemented on, due to the time it 

take to provide outputs, which reduces the throughput of the overall communication 

system.  Fully Dedicated Hardware Architectures provide solutions to the speed crisis, 

since they provide the ability of performing parallel computations.  Matrix Inversion 

is a complex algorithm that is implemented in MIMO systems.  Since software solu-

tions are not fast enough to satisfy the speed requirements, hardware solutions stood 

up to the challenge.  In this project, a fully dedicated hardware architecture to find 

matrix inversion using Gauss-Jordan Elimination algorithm is presented, complex 

arithmetic operation is performed to match the nature of the elements of estimated 

propagation matrix in MIMO systems.  The design is parameterized and universal for 

any complex matrix.  Developing the design was done using SystemVerilog HDL, 

while simulation was done through Altera ModelSim.  Software kernels were done on 

MATLAB for comparison purposes.  The proposed architecture performance shows 

its advantage over software based kernels.  Further comparisons have been done with 

previous designs for a variety of matrix sizes. 
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ABSTRAK 

 

 

 

Komunikasi digital memerlukan platform elektronik yang lebih cepat dan lebih 

khusus untuk memenuhi prestasi masa sebenar.  Kernel algoritma sangat pengiraan 

boleh membuat kesesakan kepada sistem di mana ia dilaksanakan pada , kerana masa 

yang diambil untuk menyediakan output, yang mengurangkan daya pemprosesan sis-

tem komunikasi keseluruhan.  Perkakasan Seni Bina sepenuhnya Dedicated menye-

diakan penyelesaian kepada krisis kelajuan, kerana mereka memberikan keupayaan 

melaksanakan pengiraan selari.  Matrix penyongsangan adalah algoritma kompleks 

yang dilaksanakan dalam sistem MIMO.  Sejak penyelesaian perisian tidak cukup pan-

tas untuk memenuhi keperluan kelajuan, penyelesaian perkakasan menyahut cabaran 

itu.  Dalam projek ini, seni bina perkakasan berdedikasi sepenuhnya untuk mencari 

matriks penyongsangan menggunakan algoritma Gauss -Jordan Penghapusan diben-

tangkan , operasi aritmetik kompleks dijalankan untuk menyesuaikan unsur unsur-un-

sur dianggarkan matriks perambatan dalam sistem MIMO.  Reka bentuk adalah pa-

rameterized dan sejagat untuk sebarang matriks kompleks.  Membangunkan reka ben-

tuk telah dilakukan dengan menggunakan SystemVerilog HDL.  Kernel perisian telah 

dijalankan ke atas MATLAB untuk tujuan perbandingan.  Prestasi seni bina yang di-

cadangkan menunjukkan kelebihan ke atas kernel perisian berasaskan.  Perbandingan 

selanjutnya telah dilakukan dengan reka bentuk sebelum ini untuk pelbagai saiz 

matriks. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Project Background 

 

Orthogonal Frequency Division Multiplexing (OFDM) is becoming a very 

popular multi-carrier modulation technique for transmission of signals over wireless 

channels.  OFDM divides the high-rate stream into parallel lower rate data and hence 

prolongs the symbol duration, thus helping to eliminate Inter Symbol Interference 

(ISI).  It also allows the bandwidth of subcarriers to overlap without Inter Carrier In-

terference (ICI) as long as the modulated carriers are orthogonal.  OFDM therefore is 

considered as an efficient modulation technique for broadband access in a very disper-

sive environment.   

 

Recently, high data rate and strong reliability in wireless communication sys-

tems are becoming the dominant factors for a successful exploitation of commercial 

networks.  MIMO-OFDM (multiple input multiple output orthogonal frequency divi-

sion multiplexing), a new wireless broadband technology, has gained great popularity 

for its capability of high rate transmission and its robustness against multi-path fading 

and other channel impairments. The block diagram of MIMO-OFDM transmitter and 

receiver is shown in Figure 1.1 and 1.2 respectively.  
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Figure1.1  MIMO-OFDM Transmitter 
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Figure1.2  MIMO-OFDM Reciever 

 

As a MIMO signaling technique, 𝑁𝑡 different signals are transmitted simulta-

neously over 𝑁𝑡 ×  𝑁𝑟 transmission paths, and each of those 𝑁𝑟 received signals is a 

combination of all the 𝑁𝑡 transmitted signals and the distorting noise.  The received 

signal will be the convolution of the channel and the transmitted signal.  After remov-

ing the cyclic prefix at the receiver’s side, the output of FFT module, as the demodu-

lated received signal, can be expressed in the matrix form equation as following (as-

suming that the channel is static during an OFDM block):  

𝑌 = 𝐻𝑋 + 𝑊 (1) 
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Equation (1) can be further elaborated in matrix form as equation (2). 

[
 
 
 
 
𝑌1

𝑌2

𝑌3

⋮
𝑌𝑁𝑟]

 
 
 
 

=

[
 
 
 
 
 

𝐻1,1 𝐻1,1 ⋯ 𝐻1,𝑁𝑟

𝐻2,1 𝐻1,1 ⋯ 𝐻1,𝑁𝑟

𝐻3,1 𝐻1,1 ⋯ 𝐻1,𝑁𝑟

⋮       ⋮        ⋱       ⋮
𝐻𝑁𝑟,1 𝐻𝑁𝑟,1 ⋯ 𝐻1,𝑁𝑟]

 
 
 
 
 

[
 
 
 
 
𝑋1

𝑋2

𝑋3

⋮
𝑋𝑁𝑡]

 
 
 
 

+

[
 
 
 
 
𝑊1

𝑊2

𝑊3

⋮
𝑊 𝑁𝑡]

 
 
 
 

 (2) 

Where 𝑌 is the received vector from all the 𝑁𝑡 receiver’s antennas, 𝐻 is the 

channel transform function (Complex Propagation Matrix), 𝑋 represents the transmit-

ted symbols from all the transmitting antennas for subcarrier 𝑘, 𝑊 represents zero 

mean complex Additive White Gaussian Noise.  The transfer function of the matrix-

valued channel impulse response is given by  

𝐻(𝑒𝑗2𝜋𝜃) =  ∑𝐻𝑙

𝐿−1

𝑙=0

𝑒−𝑗2𝜋𝑙𝜃, 0 ≤ 𝜃 < 1 (3) 

 

The data symbols 𝑋̂ are then estimated by linear detection algorithm such as 

Zero Forcing and is given by: 

𝑋̂ = 𝐻−1𝑌 (4) 

While (4) has to be evaluated at the symbol rate, the channel inverses 𝐻−1can be pre-

computed and have to be updated only when the channel changes (Borgmann, and 

Bölcskei, 2004). 

 

From the numerous matrix inversion algorithms that exist, Gauss-Jordan Al-

gorithm (G-J) is characterized as a simple, efficient, direct, parallelizable, and univer-

sal algorithm to find the inverse of any kind of square matrices (Duarte et al., 2009).  

Although its higher complexity (O(n3)) in contrast to other software algorithms (e.g.  

Strassen (O(n2.807)) and Coppersmith-Winograd (O(n2.376)), G-J is very important for 

developing practical architectural implementations, since the bottleneck of Von-Neu-

mann architecture can be avoided (Jacobi et al., 2011).   
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G-J Elimination requires simple arithmetic operations only i.e.  Addition/Sub-

traction, Multiplication, and Division.  In comparison, other numerical matrix inver-

sion methods require more complicated operations, such as square root operation as in 

QR decomposition by Gram-Schmidt Orthogonalization, and sine and cosine opera-

tions as in QR decomposition by Rotation (Pozrikidis, 2008).   

 

 

 

1.2 Problem Statement 

 

Matrix Inversion is one of the most costly computational operations to be per-

formed either in software or hardware (Hanzo et al., 2010).  It has vast implementa-

tions in many of nowadays technologies, especially in MIMO systems such as OFDM 

MIMO (Moussa et al., 2013) and Long-Term Evolution (LTE) MIMO receivers to 

remove the effect of the channel on the received signal (Yan et al., 2010).  It can be 

used as a pre-coding stage in OFDM MIMO in order to cancel the interference at the 

Base station (Cho et al., 2010). 

 

This operation is significant in MIMO systems because of its good perfor-

mance in high data rates applications, as it is a straight forward concept without itera-

tions (Haustein et al. 2002).  Software based matrix inversion modules suffer from 

long latency because of the complicated decoding of the executed instruction, and be-

cause of Von-Neumann bottleneck, which is a result of sharing the same memory for 

data and instructions.  Figure 1.3 depicts the time required to perform matrix inversion 

on matrices of different sizes.  The long latency time (0.02 second for a 36x36 matrix) 

makes the utilization of this technique less desirable in real time application. 

 

In IEEE 802.11a-1999, fifty two OFDM subcarriers are used.  Of the fifty two 

subcarriers, 48 are for data and 4 are for pilot subcarriers.  Performing Matrix Inversion 
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in a system that uses such large number of subcarriers is a critical challenge of opti-

mizing the design for speed and cost (Moussa et al., 2013). 

 

On the other hand, a regular (direct) method of matrix inversion such as 

Cramer’s require evaluation of (𝑁 + 1) × 𝑁 × 𝑁 determents.  So for a 10x10 system, 

359 million multiplications have to be performed (Cho et al., 2010).  For a 20x20 

system the number of multiplications is factorial(21).  A fast computer will do the task 

in 1600 years (Turner, 2000).   

 

Figure 1.3 CPU time vs matrix’s size  
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1.3 Objective 

 

The objective of this project is to build an accelerated, scalable, and low area 

cost hardware architecture that performs matrix inversion for complex numbers, using 

the Gauss–Jordan method.  The architecture should accomplish the complex inversion 

in a better time than software based approaches.  It should be able to operate on any 

matrix regardless of its size.  Finally, it should achieve better area consumption in 

comparision to some other hardware architectures.   

 

 

 

1.4 Scope 

 

The proposed system is responsible for finding the inverse of the square com-

plex propagation matrix in MIMO systems.  Numerical computation methods are ad-

dressed and compared to both numerical and regular methods. 

Hardware Description Languages are the medium of implementing these algo-

rithms, such as Verilog and SystemVerilog.   

The following software are used in this project:  

 MATLAB 2013 is used for benchmarking and for results verification.   

 Quartus II is used for modelling the system in Verilog and SystemVer-

ilog.   

 ModelSIM Altera is used for simulating the design and for acquiring 

performance statistics.   

The Field Programmable Logic Array (FPGA) platform is Altera DE2-115 De-

velopment and Education Board, powered by Altera Cyclone IV E FPGA. 
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Single precision floating point (IEEE 745 standard) Complex Addition/Sub-

traction, Multiplication and Division operations are used in the Inversion process; this 

is necessary since the estimated matrix has complex values.   

 

 

 

1.5 Project Overview 

 

The top level functional block diagram is shown in Figure (1.4).  The system 

will receive the complex matrix entries and find the inverse upon setting start signal 

high.  The results will be ready after the done signal is set, while the fail signal indicates 

that the input matrix is a singular matrix, thus it has no inverse. 

 

GAUSS-JORDAN MATRIX 

INVERSE TOP MODULE
Â 
nxn

Â  
nxn

start reset done fail

Figure 1.4 Top level module of G-J 

 

The design is made up of two basic modules, the Control Unit (CU) and the 

Data-path Unit (DU).  CU has the main Finite State Machine (FSM) controller, and 

controls the sequence of the operations and processes of G-J.  The DU contains the 
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basic modules necessary for G-J, named: Pivoting, Normalization, Elimination, Stor-

age, Memory Address Generator (MAG), and several counters designated for generat-

ing the indices of the matrix’s elements.  Figure (1.5) shows the CU and DU organi-

zation of G-J top level module.   

 

A tradeoff between the area cost and speed will be done, resulting in 4 different 

designs, 2 for each real and complex plane, each design is optimized either for speed 

or area requirements.   

 

The 4 different developed designs performance will be evaluated: Real (opti-

mized for area and speed) and Complex (optimized for area and speed).  The aspects 

of evaluation are the number of consumed clock cycles to finish the operation, latency, 

Look Up Tables (LUTs) consumption, M9K memory unit utilization, and RAM usage. 
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NORMAILZATION
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NORMAILZATION
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ELIMINATION
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Figure (1.5) CU and DU of G-J 
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1.6 Thesis Structure 

 

This thesis consists of five chapters.  Chapter one has described the background 

of the project, problem statement, objectives, scope and project overview.  Chapter 

two describes the theory and background of Gauss-Jordan Elimination method as well 

as previous works done in this field.  Chapter three explains the research methodology 

used in this thesis including the system architecture.  Chapter four shows the experi-

mental results followed by analysis and discussion.  Chapter five states the conclusion 

and the possible future improvements.  Finally, Appendices A, B, and C contains the 

MATLAB, C, and SystemVerilog source code of G-J algorithm respectively.  
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