NATURAL RADIOACTIVITY LEVEL OF PRODUCTS AND BY-PRODUCTS OF ILMENITE PROCESSING INDUSTRIES IN PERAK, MALAYSIA.

AMEER SABAH NOORI AL-KAWAZ

Master's Dissertation (By course work and research)

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Science (Physics)

> Faculty of Science Universiti Teknologi Malaysia

2

To my beloved family (my lovely mother, father, sisters and brother) for their encouragement and love

ACKNOWLEDGEMENT

First of all, thanks to Allah, god and creator of this universe for His blessing in accomplishment of this research. I would like to express my gratitude to my supervisor, Professor Dr. Husin Wagiran for his guidance and support. Also special thanks to Universiti Teknologi Malaysia my employer for funding my study.

Besides, not forgettable to our research group member that consists of Dr. Haydar Aboud Namma, Ms. Lee Siak Kuan and Mr. Omeje Maxwell who are help me directly during the commencement of the research. Nevertheless, I would like to thanks to my entire fellow postgraduate student and my family for their support mentally and physically. Without them, it is impossible for me to go through this process smoothly and successfully within given period.

ABSTRACT

Natural background radiation levels in the minerals collected from two tin tailing processing factories at Kinta Valley, Perak, Malaysia were measured. Nine samples were collected analyzed for the activity concentration of the naturally occurring radionuclides and gross alpha and gross beta activities. The activity concentrations of ²³⁸U, ²³²Th and ⁴⁰K were analyzed by using a HPGe detector. The activity concentration of the samples were found in the range 374 - 13376 Bq kg⁻¹ for ²³⁸U, 842 - 147347 Bq kg⁻¹ for ²³²Th and 96 - 1827 Bq kg⁻¹ for ⁴⁰K. Based on the activity concentration of ²³⁸U, ²³²Th and ⁴⁰K, gamma absorbed dose rates in air at 1 meter above the ground were calculated using the procedure applied by UNSCEAR 2000. The range of absorbed dose rates calculated was 720 - 95253 nGy h⁻¹and the range of annual effective dose rate was 883 - 116819 µSv y⁻¹. The calculated radium equivalent activities (*Ra_e*) were in the range 1663 – 224223 Bq kg⁻¹ and the range of the soil samples were found in the range 5.79 - 220 Bq kg⁻¹ and the range of the gross beta activity was 3.97 - 552 Bq kg⁻¹. Finally, the range of the external radiation hazard index was calculated as 4 - 605.

ABSTRAK

Aras sinaran latar belakang semulajadi dalam mineral yang diambil dari dua kilang amang di Lembah Kinta, Perak, Malaysia telah diukur. Sebanyak 9 sampel yang diambil telah dianalisis bagi kepekatan keaktifan radionuklid semulajadi dan kepekatan keaktifan gros alfa dan gros beta. Kepekatan keaktifan ²³⁸U,²³²Th dan ⁴⁰K telah dianalisis menggunakan pengesan HPGe. Kepekatan keaktifan dalam sampel-sampel tersebut telah ditemui berada dalam julat 374 - 13376 Bq kg⁻¹ bagi ²³⁸U, 842 - 147347 Bq kg⁻¹ bagi ²³²Th dan ⁹⁶ - 1827 Bq kg⁻¹ bagi ⁴⁰K. Berdasarkan kepekatan keaktifan ²³⁸U, ²³²Th dan ⁴⁰K, kadar dos terserap gama di udara pada ketinggian 1 m dari tanah telah dikira menggunakan prosedur yang digunakan oleh UNSCEAR 2000. Julat kadar dos terserap yang dikira adalah 720 - 95253 nGy h⁻¹ dan julat kadar dos berkesan tahunan adalah 883 - 116819 µSv y⁻¹. Aktiviti setara radium yang dikira adalah dalam julat 5.79 - 220 Bq kg⁻¹ dan julat bagi gros beta adalah 3.97 - 552 Bq kg⁻¹. Akhir sekali,, julat indeks hazad sinaran luaran yang dikira adalah 4-605.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	Х
	LIST OF FIGURES	xi
	LIST OF SYMBOLS	xiii

INTRODUCTION

1

1

1.1	Introduction	1
1.2	Statement of Problem	2
1.3	Objectives of Study	3
1.4	Scope of Study	3
1.5	Organization of the Dissertation	4

2	2.1	Introduction	5
	2.2	Radioactivity	7
		2.2.1 Stable and Unstable Nuclides	7

	2.2.2 Definition and Unit of Radioactivity	8		
	2.2.3 Half-life and Decay Law	9		
	2.2.4 Ionization	9		
2.3	Sources of Radiation	10		
	2.3.1 Uranium	11		
	2.3.2 Thorium	13		
	2.3.3 Potassium-40 (⁴⁰ K)			
2.4	Tin mining	16		
2.5	Naturally Occurring Radioactive Material (NORM)	18		
2.6	IAEA Critical Value	19		
2.7	Quantity and Radiation Units	20		
	2.7.1 Exposure, Absorbed Dose, Equivalent Dose	20		
	and Effective Dose			
	2.7.2 Dose units from Radioactive Source	23		

3 METHODOLOGY

3.1	Introduction	25
3.2	Location of Samples	27
3.3	Sample Preparation	28
	3.3.1 Cleaning	28
	3.3.2 Drying	29
	3.3.3 Grinding	30
	3.3.4 Sieving	30
	3.3.5 Packaging	31
3.4	Gamma-Ray Detection System	31
3.5	Calculations of Concentration of $^{232}\text{Th},^{238}\text{U}$ and ^{40}K	32
3.6	Alpha and Beta Counting System	35
3.7	Sample Preparation of low α/β counter	36

RESULTS AND DISCUSSION

4.1	Introduction	38
4.2	Measurement of radioactivity concentration of ²³⁸ U,	38
	232 Th and 40 K	
4.3	Measurements of gross alpha and gross beta activity	47
4.4	Radiation Risk	50
	4.4.1 Calculation of the Radium Equivalent	50
	4.4.2 Calculation of the External Gamma Dose Rate	52
	4.4.3 Calculation of the External Radiation Hazard	54

5 CONCLUSION AND RECOMMENDATION 56

5.1	Introduction	56
5.2	Conclusion	56
5.3	Recommendation	58

REFERENCES

4

38

59

LIST OF TABLES

TABLE NOTITLE

PAGE

	228	
2.1	²³⁸ U Decay Series	12
2.2	²³² Th Decay Series	14
2.3	⁴⁰ K Decay Series	16
2.4	IAEA Critical Value	19
2.5	Radiation weighting factors for different types	21
	ionizing radiation, W _r	
2.6	Tissue Weighting Factors, W_t	22
2.7	Relationships between SI and Non-SI Units	23
3.1	Description of the samples collected	27
4.1	Concentration of ²³⁸ U calculated from the	40
	concentration of the daughters ²¹⁴ Pb and ²¹⁴ Bi in ppm	
4.2	Concentration of ²³² Th calculated from the	41
	concentration of the daughters ²⁰⁸ Ti and ²²⁸ Ac in ppm	
4.3	the activity concentration of 238 U, 232 Th and 40 K in	42
	the unit of Bq kg ⁻¹	
4.4	Gross alpha and gross beta activity concentrations in	48
	unit Bq kg ⁻¹ of the samples collected from Factory A	
	and Factory B	
4.5	Calculated radium equivalent in Bq kg ⁻¹ of the	51
	samples collected from Factory A and Factory B	
4.6	The external gamma dose rate in unit nGy h^{-1} and the	53
	annual external gamma dose rate in unit $\mu Sv y^{-1} of$	
	the samples collected from Factory A and B	
4.7	The external radiation hazard of the samples	55
	collected from Factory A and B	

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
2.1	Stability curve	8
2.2	238 U and 232 Th decay	15
3.1	Flowchart of the methodology steps	26
3.2	Tailing process (a) tor minerals (m). (14387.W), (b)	28
	amang industries	
3.3	WiseClean machine	29
3.4	(A) Laboratory Oven, (B) Collected samples	29
3.5	Sieve shaker	30
3.6	Vial containers containing amang samples after	31
	preparation and stored for one month	
3.7	(A) Gamma-ray Spectrometer, (B) lead shielding	37
3.8	Low alpha beta counting system	35
3.9	Plastic containers containing amang samples after	37
	preparation	
4.1	Bar chart showing the activity concentration of ²³⁸ U for	43
	Factory A in Bq kg ⁻¹	
4.2	Bar chart showing the activity concentration ²³⁸ U of the	44
	samples collected from Factory B in Bq kg ⁻¹	
4.3	Bar chart showing the activity concentration of ²³² Th for	45
	Factory A in Bq kg ⁻¹	
4.4	Bar chart showing the activity concentration of ²³² Th for	45
	Factory B in Bq kg ⁻¹	
4.5	Bar chart shows the activity concentration of 40 K for	46
	Factory A in Bq kg ⁻¹	

4.6	Bar chart shows the activity concentration of 40 K for	47
	Factory (B) in Bq kg ⁻¹	
4.7	Bar chart of gross alpha and gross beta activity	49
	concentration in Bq kg ⁻¹ of the samples collected from	
	Factory A	
4.8	Bar chart of gross alpha and gross beta activity	49
	concentrations in Bq kg^{-1} of the samples collected from	
	Factory B	

LIST OF SYMBOLS

Α	-	activity at time t
A_0	-	initial activity
λ	-	decay constant
$t_{\frac{1}{2}}$	-	Half time
Н	-	equivalent dose
D	-	absorbed dose
Wr	-	radiation weighting factor
W_t	-	the tissue weighting factor
v_i	-	Tyre ground contact point velocity at i th wheel
ω_i	-	Tyre rotational speed at i th wheel
F _{xi}	-	Longitudinal tyre force at i th wheel
ALI	-	annual limits of intake
Dl	-	is the relevant annual effective dose limit
Н	-	effective dose per unit of intake
DAC	-	Derived Air Concentrations
Xr	-	exposure rate
D	-	distance in meters from the source to the position
Γ	-	specific gamma constant for that particular radionuclide
C_{std}	-	activity concentration of the standard sample
C_{sampl}	-	activity concentration of the sample
W _{std}	-	weight of the standard sample
$N_{\scriptscriptstyle sampl}$	-	net count of the photopeak area for the sample
W _{sampl}	-	weight of the sample
N_{std}	-	net count of the photopeak area for the standard sample

A_{sampl}	-	activity concentration of the sample
A_{std}	-	activity concentration of the standard sample
ΔA_{std}	-	uncertainty of the specific activity
Ra_{eq}	-	Radium Equivalent
A_{RA}	-	average activity concentrations of ²³⁸ U
A_{Th}	-	average activity concentrations of ²³² Th
A_K	-	average activity concentrations of 40 K
Dc	-	absorbed dose rate at 1 m from the ground

CHAPTER 1

1.1 Introduction

Natural substances that are radioactivity are called natural occurring radioactive materials (NORM). Atoms of the substances emit invisible radiation. Usually there are two types of radiation: ionizing radiation and non-ionizing radiation. The ionizing radiations emitted from these atoms are, gamma, alpha, and beta. These radiations can penetrate materials in different levels. The effects of these ionizing radiations can dangerous to the living cells (Lawson, 1999). Nucleus exists only in specific energy levels just like electrons. If the nucleus is not stable it will emit radiation that depends on the difference between the energy levels to reach the stability level. Alpha particles consist of two protons and two neutrons. Beta particles have the same properties of electrons. Gamma ray is electromagnetic waves with high energy. Alpha and beta particles have penetration power weaker than gamma ray. The skin of the human body can block alpha and beta particles. Gamma ray can penetrate the skin and interact with the internal cells causing harm to the tissue in the human body.

Cellular damage can be classified into two types, direct and indirect damage. The direct damage is if radiation interacts with the atoms of the DNA molecule, or some other cellular component critical to the survival of the cell, it is referred to as a direct effect. Such an interaction may affect the ability of the cell to reproduce and, thus, survive. If enough atoms are affected such that the chromosomes do not replicate properly, or if there is significant alteration in the information carried by the DNA molecule, then the cell may be destroyed by direct interference with its life sustaining system.

In Malaysia, there are a lot of mines, production ore, raw gold, iron ore, coal, bauxite, mica, silica and kaolin. Rare earth minerals such as zircon, eliminate and

Struve rite were produced as by-products of tin process (Cohen, 1993). The mining and processing of ores for the production of metals and minerals generate large quantities of residual bulk solid and liquid wastes. Because the minerals of value make up only a small fraction of the ore, most of these bulk minerals has no direct use (Hu et al, 1981). Depending on the original ores and processing methods, some of these wastes contain elevated concentration of Technologically-Enhanced, Naturally-Occurring Radioactive Materials (TENORM). It has been reported that some of uncommon metals have highly radioactive waste products (Myrick et al, 1983). Some processes associated with metal extraction appear to concentrate certain radionuclide and enhance their environmental mobility. In Malaysia, tin ore mining has left large areas of radioactively contaminated spoil heap. Amang is a general term for the byproducts obtained when tin tailings are processed into concentrated ores. It includes minerals such as monazite, zircon, eliminate, rutile, struverit and xenotime (Mireles et al, 2003).

1.2 Statement of Problem

The NORM in the tin mining is an important parameter since the radioactivity harms the human body. The occurrence of the NORM in minerals causes health hazard to a living tissue. Therefore, it is aim of this project to detect activity concentrations of natural radionuclides emitting gamma radiations and the activity of alpha and beta rays radiations. From the activity concentration of natural occurring radionuclides, the radiation hazard can be estimated.

1.3 Objectives of the Study

In this study, to accomplish the aim of determining the radiation hazard to the public leaving close to the factories, the following objectives are outlined:

- To determine the concentration of naturally occurring radioactivity concentration of ²³⁸U, ²³²Th and ⁴⁰K of the samples collected from two tin mining factories at Kinta Valley, Perak Malaysia.
- 2. To determine the activity concentration of gross alpha and gross beta of the samples collected from two factories at Kinta Valley, Perak Malaysia.
- 3. To assess the radiation hazard to the publics in the area around the factories.

1.4 Scope of the Study

In this study the scopes are following according to the objectives.

- 1. Samples are analyzed in this study are 9 samples collected from two factories.
- 2. The activity concentration of 238 U, 232 Th and 40 K measurement by using γ -ray spectrometry using HPGe detector.
- 3. Gross alpha and gross beta activity concentrations measurement by using Tennelec counting systems.
- 4. Radiation hazard equation is used to calculate the radium equivalent, dose rate equation is used to determine the dose rate, while equation of annual effective dose rate is used to calculate the annual effective dose rate, AEDR, and to calculate the external radiation hazard equation of the external radiation hazard is used.
- 5. Evaluate the excremental results according to international standard of radionuclides.

1.5 Organization of the Dissertation

This thesis consists of five chapters. The first chapter consists of introduction, statement of problem, objectives of the study and scope of the study. Chapter two is the literature review. It covers the work of relevant studies carried out. Chapter three explain the methods and equipment used in the experimental work. Chapter four shows the data obtained from the measurements and graphs. Finally chapter five presents the conclusions of the results and discussion, recommendation and suggestion about the future works are also provided.

REFERENCES

Aigbedion, I., and Iyayi, S. E. (2007). Environmental effect of mineral exploitation in Nigeria. *International Journal of Physical Sciences*, 2(2), 33-38.

- Al-Geed, A. M. M. A., and Sam, A. K. (2000).Radiological evaluation of gold mining activities in Ariab (Eastern Sudan). *Radiation protection dosimetry*, 88(4), 335-340.
- Anagnostakis, M. J., Hinis, E. P., Karangelos, D. J., Petropoulos, N. P., Rouni, P. K., Simopoulos, S. E., and Žunić, Z. S. (2001). Determination of depleted uranium in environmental samples by gammaspectroscopic techniques. *Archive of Oncology*, 9(4), 231-236.
- Anoka, O.C. (1995). *Radioactivity Due to Low Energy Gamma Ray in Jos Tin Mine Tailings*. Bachelor, ObafemiAwolowo University, Ile Ife.
- Azlina, M. J., Ismail, B., SamudiYasir, M., and Taiman, K. (2001). Work activity, radiation dosimeters and external dose measurement in amang processing plant. J. Sains Nuklear Malaysia, 19(2), 31-39.
- Cameron ,J.R. and Skofronick, J.G. (1978).Medical physics. John Wiley and Sons, New York.
- Canberra Industries, Inc. (2001a).*Model LB5500 Low Background Counting System*.Meriden, USA: Eclipse LB User's Manual.
- Chiras, D. D. (2001). Instructor's Toolkit to Accompany Environmental Science: Creating a Sustainable Future. Jones and Bartlett.
- Cohen, S. (1993). Diffuse NORM Wastes-Waste Characterization and Preliminary Risk Assessment, US Environmental Protection Agency Office of Radiation and Indoor Air, Washington, DC.
- Enghag, P. (2004). Encyclopedia of the Elements: Technical Data. *History, Processing, Applications, Wiley-VCH, Weinheim.*
- Faiz, M. K. (1994). The physics of radiation therapy. Williams and Wilkins, Oxford University Press.
- Gentry, R. V. (1973). Radioactive halos. *Annual Review of Nuclear Science*,23(1), 347-362.

- Gilmore, G. R., and Hemingway, J. D. (2008).Practical gamma-ray spectrometry, John Willey and Sons. *Inc., Chichester, West Sussex, UK*.
- Hamby, D. M., and Tynybekov, A. K. (2002). Uranium, thorium, and potassium in soils along the shore of Lake Issyk-Kyol in the Kyrghyz Republic. *Environmental Monitoring and Assessment*, 73(2), 101-108.
- Hasebe, N., Barbarand, J., Jarvis, K., Carter, A., and Hurford, A. J. (2004). Apatite fission-track chronometry using laser ablation ICP-MS. *Chemical Geology*,207(3), 135-145.
- Heather, A. (2010). Radioactivity-Nuclear Bombardment Reactions. Retrieved on March 18, 2014, from http://chem1180.blogspot.com.
- HONG, Y. C. 2005. Determination of Radioactivity Levels of Norm in Marine Sand Using Gamma Spectrometer (A Case for Malacca's Coastline).Master, UTM.
- Hu S.J, Chong C.S. and Subra S. (198). U and Th in Cassitertes Sample and Amang by-Products, Health Physics, 40,248-250.
- IAEA, (1989).*Construction and Use of Calibration Facilities for Radiometric Field Equipment*, Technical reports series No 309. Vienna, Austria.
- IAEA. (1989). Measurement of radionuclides in food and environmental samples. IAEA Technical Report Series 295. International Atomic Energy Agency, Vienna, Austria.
- Ismail, B., Yasir, M. S., Redzuwan, Y., and Amran, A. M. (2003). Radiological environmental risk associated with different water management systems in amang processing in Malaysia. *Pakistan Journal of Biological Sciences*, 6(17), 1544-1547.
- Lawson, R. S. (1999). An Introduction to Radioactivity. Shieh Physicist, Nuclear Medecine Department, Manchester Royal Infirmary.
- Lee, S. K. (2007). Natural background radiation in the Kinta District, Perak Malaysia (master dissertation, Universiti Teknologi Malaysia, Faculty of Science).

- Lee, S. K., Wagiran, H., Termizi, A., Heru, N., and Khalik, A. (2009). Radiological monitoring: terrestrial natural radionuclides in Kinta District, Perak, Malaysia. *Journal of Environmental Radioactivity*, 100(5), 368-374.
- Mireles, F., Davila, J. I., Quirino, L. L., Lugo, J. F., Pinedo, J. L., and Rios, C. (2003). Natural soil gamma radioactivity levels and resultant population dose in the cities of Zacatecas and Guadalupe, Zacatecas, Mexico. *Health physics*, 84(3), 368-372.
- Mould, R. F. (1985). Radiation protection in hospitals. Taylor & Francis.
- Myrick, T. E., Berven, B. A., and Haywood, F. F. (1983). Determination of concentrations of selected radionuclides in surface soil in the US.*Health Physics*, *45*(3), 631-642.
- Nasirian, M., Bahari, I., and Abdullah, P. (2008). Assessment of natural radioactivity in water and sediment from Amang (tin tailing) processing ponds. *Malay. J. Analyt. Sci*, 12(1), 150-159.
- Noz, M. E., and Maguire Jr, G. Q. (1985).Radiation protection in the radiologic and health sciences.Philadelphia.
- ORTEC.(2001). MAESTRO®-32 A65-B32 Software User's Manual.Perkin Elmer Instruments.
- Ramli, A. A. M., Besar, I., Khalid, M. A. and Hassan, S. (2000). Radiation safety.Malaysian Institute for Nuclear Technology and Research, Bangi Malaysia.
- Redzuwan, Y., Ismail, B., Amran, A. M., SamudiYasir, M. Y., and Lin, C. L. (2002). The impact of amang processing activity on the water quality and sediment of open water system. In 15th Analytical Chemistry Symposium.
- Shamsuddin, J. (1990). Sifat dan Pengurusan Tanih di Malaysia, Dewan Bahasa & Pustaka, Kuala Lumpur.
- Sharama, N. (2011). Sharama, R and Virk HS. Advanced in Applied Science Research, 2(3), 186-190.

- Sohrabi, M. (1990). Recent radiological studies of high level natural radiation areas of Ramsar: in Proceedings of the International Conference on High Levels of Natural Radiation Areas, Rasmar, IAEA, Vienna.
- Sprawls, P. (1995). *Physical principles of medical imaging*. Medical Physics Publishing Madison.Wisconsin.
- Thornburn, C. C. (1972). Isotopes and radiation in biology. Butterworths, London.
- Tsoulfanidis, N. (1995, July). Measurement and detection of radiation. In *Fuel and Energy Abstracts* (Vol. 36, No. 4, pp. 303-303). Elsevier.
- Tufail, M., Akhtar, N., and Waqas, M. (2006).Measurement of terrestrial radiation for assessment of gamma dose from cultivated and barren saline soils of Faisalabad in Pakistan. *Radiation Measurements*, 41(4), 443-451.
- Tynybekov, A. (2001). Radiological researches in a southeast part of Lake Issyk-Kul. In International Conference Human Health and Environment. Strategies and Programs in New Millenium.
- UNSCEAR, (2000). Effects of Ionizing Radiation: 2000 Report to the General Assembly, with Scientific Annexes, Vol. II: Effects. *United Nations, New York*.
- Viruthagiri, G., and Ponnarasi, K. (2011). Measurement of natural radio activity in brick samples. *Advances in Applied Science Research*, 2(2).
- World Nuclear Association. (2014). *Naturally-Occurring Radioactive Materials* (*NORM*). Retrieved on March 18. http://www.world-nuclear.org.
- Yeong, C. H. (2005). Detrminiton of Radioactivity Levels of NORM in Marine Sand Using Gamma spectrometer. Bachelor, Universiti Teknologi Malaysia, Skudia.
- Yip, Y. H. (1969). *The development of the tin mining industry of Malaya*. University of Malaya Press, Kuala Lumpur.

- Zhu, H., Huang, H., Song, J., Li, J., Zhang, J., Huang, J., and Guo, Y. (1993). Gamma radiation levels around the highest background area in Poland. In *Proceeding of the International Conference on High Levels of Natural Radiation*, Rasmar, IAEA, Vienna.
- Zou, H., and Zindler, A. (2000). Theoretical studies of ²³⁸U, ²³⁰Th, ²²⁶Ra, ²³⁵U and ²³¹Pa disequilibria in young lavas produced by mantle melting. *Geochimica et Cosmochimica Acta*, *64*(10), 1809-1817.