
REMOTE DYNAMICALLY RECONFIGURABLE NETWORK PROCESSING
MIDDLEBOX

TAN TZE HON

UNIVERSITI TEKNOLOGI MALAYSIA



REMOTE DYNAMICALLY RECONFIGURABLE NETWORK PROCESSING
MIDDLEBOX

TAN TZE HON

A thesis submitted in fulfilment of the
requirements for the award of the degree of

Master of Engineering (Electrical)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

FEBRUARY 2015



iii

Specially dedicated to my beloved family, lectures and friends
for their support and encouragement throughout my education.



iv

ACKNOWLEDGEMENT

First of all, I would like to express my deepest and sincerest appreciation to my
supervisor, Dr. Nadzir Marsono and co-supervisor Dr. Ooi Chia Yee. Their constant
guidance and motivation lead to this fruitful research. Other than research skill and
technical skill, they teach me the lessons of life, which will be very helpful for my
future development. Above all, I would never realized and awakened my potential
without their enlightenment and inspiration.

I would also like to thank everyone who contributed directly and indirectly to
this research. I sincerely thank my fellow postgraduate students and other lecturers
who help and accompany me during my study in UTM.

Lastly, I would like to thank Dr. Nadzir Marsono again for everything since the
very beginning of my study in UTM. Thank you!



v

ABSTRACT

Remote dynamically reconfigurable platforms use dynamic reconfiguration
to provide solutions for applications to cope with changes in both functional
and performance requirements. Most existing remote dynamically reconfigurable
platforms are inefficient in handling dynamic reconfiguration process. This is due
to the use of general-purpose processor in their designs or having limited partial
bitstream transmission throughput that results in long device down-time. This thesis
presents an architecture of remote dynamically reconfigurable middlebox on NetFPGA
development board. The developed platform relies on a customized reconfiguration
controller and Internal Configuration Access Port to achieve dynamic reconfiguration.
In addition, this platform uses 1Gbps Ethernet link for partial bitstreams transmission
to achieve remote update. In order to offer maximum flexibility for network
processing, this work includes an architecture that allows remote updates on packet-
forwarding as well. This allows packet-forwarding algorithm and its implementation
to be optimized or customized after deployment. A case study on network protection
using this platform is included in this thesis to verify application functionality
updates. All hardware designs are verified using ModelSim simulation and tested
experimentally using the NetFPGA development board. The developed remote
dynamically reconfigurable platform is stand-alone and can achieve remote functional
update without the need of a host computer. Based on experimental results, the
proposed platform achieves 350Mbps reconfiguration throughput, which is significant
for mass remote update as device downtime for update is reduced. The developed
platform is suitable to be used as network processing middlebox.



vi

ABSTRAK

Platform keboleh-tatarajahan semula dinamik secara jarak jauh menggunakan
fitur tatarajah semula dinamik untuk menyediakan penyelesaian kepada aplikasi
dalam menangani perubahan keperluan fungsian dan prestasi. Kebanyakan platform
keboleh-tatarajahan semula dinamik secara jarak jauh sedia ada adalah tidak efisien
dalam pengendalian proses pentatarajahan semula. Hal ini disebabkan penggunaan
pemproses tujuan am di dalam reka bentuk atau mempunyai kadar celus yang
sangat terhad dalam penghantaran aliran bit separa yang boleh mengakibatkan
masa henti peranti yang panjang. Tesis ini membentangkan seni bina middlebox

keboleh-tatarajahan semula dinamik secara jarak jauh dengan menggunakan papan
pembangunan NetFPGA. Platform yang telah dibangunkan bergantung kepada
pengawal pentatarajahan semula tersuai dan port capaian tatarajah semula dalaman
untuk mencapai pentatarajahan semula secara dinamik. Di samping itu, platform
ini menggunakan pautan Ethernet selaju 1Gbps dalam penghantaran aliran bit separa
untuk melaksanakan kemas kini secara jarak jauh. Dalam usaha untuk menawarkan
kelenturan maksimum untuk pemprosesan rangkaian, kerja ini juga merangkumi satu
seni bina yang membolehkan kemas kini jarak jauh pada algoritma ajuan paket. Hal
ini membolehkan algoritma ajuan paket dan implementasinya dioptimumkan atau
disesuaikan selepas kerah tugas. Satu kajian kes dalam perlindungan rangkaian dengan
menggunakan platform ini terkandung dalam tesis ini untuk menentusahkan kemas
kini fungsian aplikasi. Semua reka bentuk perkakasan telah ditentusahkan dengan
menggunakan simulasi ModelSim dan diuji secara eksperimen dengan menggunakan
papan pembangunan NetFPGA. Platform keboleh-tatarajahan semula dinamik secara
jarak jauh yang telah dibangunkan boleh berfungsi secara kendiri dan dapat mencapai
kemas kini fungsian secara jarak jauh tanpa memerlukan komputer hos. Berdasarkan
keputusan eksperimen, platform yang dicadangkan dapat mencapai kadar celus
pentatarajahan semula sebanyak 350Mbps, yakni penting kepada kemas kini jarak jauh
secara besar-besaran kerana masa henti peranti semasa kemas kini telah disingkatkan.
Platform yang telah dibangunkan sesuai diguna sebagai peranti perantaraan dalam
pemprosesan rangkaian.



vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xi
LIST OF ABBREVIATIONS xiii
LIST OF APPENDICES xv

1 INTRODUCTION 1
1.1 Reconfigurable Computing as a Paradigm Shift in

Computing 1
1.2 Dynamic Reconfiguration in Network Processing

Unit 2
1.3 Problem Statement 3
1.4 Research Objectives 4
1.5 Scope of Work 4
1.6 Research Contributions 5
1.7 Thesis Organization 6

2 LITERATURE REVIEW 7
2.1 Reconfigurable Hardware 7

2.1.1 Configuration Capability 7
2.1.2 Dynamic Reconfiguration 10
2.1.3 Reconfiguration Bitstream 10
2.1.4 Configuration Interface 11

2.2 NetFPGA Development Board 13



viii

2.3 Network Protection 14
2.4 Related Work 14

2.4.1 Remote Dynamically Reconfigurable
Platform 14

2.4.2 Network Protection in Reconfigurable
Hardware 16

2.4.3 Dynamic Reconfiguration in NetFPGA 16
2.5 Motivation for Extended Work 17

3 METHODOLOGY 19
3.1 Proposed Platform 19
3.2 Implementation Flow and Techniques 22
3.3 Design Tools and Environment 23

3.3.1 Mentor Graphics ModelSim 23
3.3.2 Microsoft Visual Studio 24
3.3.3 Wireshark 24
3.3.4 Xilinx ChipScope Pro 24
3.3.5 Xilinx Embedded Development Kit

(EDK) 24
3.3.6 Xilinx Integrated Software Environment

(ISE) 25
3.3.7 Xilinx PlanAhead 25
3.3.8 Design Environment 25

3.4 Chapter Summary 26

4 DESIGN, IMPLEMENTATION AND EVALUATION 27
4.1 Platform Implementation 27

4.1.1 Partial Reconfiguration Design Flow 29
4.1.2 FIFOs 29
4.1.3 Header Parser 30
4.1.4 Bitstream Packet Handler 30
4.1.5 ICAP Interface 33
4.1.6 Packet Manager 33
4.1.7 Partial Reconfigurable Module 34

4.1.7.1 Data Packet Handler 35
4.1.7.2 Header Processor 36
4.1.7.3 Payload Processor 36

4.1.8 Communication Client 37



ix

4.2 Waveform Verification of Developed Platform 38
4.3 Performance Evaluation 41
4.4 Chapter Summary 44

5 NETWORK PROCESSING UNIT CASE STUDIES 45
5.1 Network Protection 45
5.2 Port-based Firewall 46
5.3 Stateless Network-based Intrusion Prevention Sys-

tem 48
5.4 Waveform Verification of Implemented Case Study 49
5.5 Result and Discussion 53
5.6 Benefits of Remote Dynamic Reconfiguration to

Network Processing on Middleboxes 54
5.7 Chapter Summary 57

6 CONCLUSION AND FUTURE WORK 58
6.1 Research Achievements 58
6.2 Future Work 59

REFERENCES 60

Appendices A 66



x

LIST OF TABLES

TABLE NO. TITLE PAGE

3.1 Components implementation flow and techniques. 23
4.1 The list of FIFOs in Figure 4.3. 30
4.2 Logic utilization. 41
4.3 Comparison with previous work. 43
5.1 Logic utilization for network protection. 53



xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Conceptual view of SRAM-based FPGA. 8
2.2 Configuration capability of reconfigurable hardware. 9
2.3 Difference between self-reconfigurable FPGA and externally-

reconfigurable FPGA. 9
2.4 Example of Xilinx bitstream. 12
2.5 Configuration interfaces in Xilinx FPGA. 13
2.6 NetFPGA framework architecture. 13
3.1 System block diagram of the proposed platform. 21
3.2 Architectural framework of the proposed platform. 21
4.1 NetFPGA 10G reference pipeline. 28
4.2 Top level architecture of NetFPGA (left) and rrBox (right). 28
4.3 Functional block diagram of rrBox. 28
4.4 State transition diagram for Header Parser. 31
4.5 Sample of bitstream packet. 32
4.6 State transition diagram for Bitstream Packet Handler. 32
4.7 State transition diagram for ICAP Interface. 33
4.8 State transition diagram for Packet Manager. 35
4.9 State transition diagram for Data Packet Handler. 36
4.10 Flowchart for Communication Client. 37
4.11 Waveform of a sample packet. 38
4.12 Waveform verification of Header Parser. 39
4.13 Waveform verification of Bitstream Packet Handler. 39
4.14 Waveform verification of ICAP Interface. 39
4.15 Waveform of Packet Manager at the arrival of bitstream

packet. 40
4.16 Waveform of Packet Manager at the arrival of data packet. 40
4.17 Reconfiguration time for various size of partial bitstream. 41
4.18 Active system of the developed platform. 44
5.1 Conceptual view of PRM to implement packet processing

modules for network protection. 46



xii

5.2 Functional block diagram of port-based firewall. 47
5.3 State transition diagram of the Header Processor in

Figure 5.2. 48
5.4 Functional block diagram of stateless NIPS. 49
5.5 Architecture of CAM-based string matching. 50
5.6 State transition diagram of the Header Processor in

Figure 5.4. 50
5.7 State transition diagram of the Payload Processor in

Figure 5.4. 51
5.8 Waveform of port-based firewall at the arrival of packet to

whitelisted port. 51
5.9 Waveform of port-based firewall at the arrival of packet to

blacklisted port. 52
5.10 Waveform of stateless NIPS at the arrival of packet without

signature. 52
5.11 Waveform of stateless NIPS at the arrival of packet containing

signature. 52
5.12 Platform setup for experimental test. 54
5.13 Data packets captured in the test of port-based firewall with

7.7ms of down-time for remote reconfiguration. 55
5.14 Data packets captured in the test of stateless NIPS with 7.7ms

of down-time for remote reconfiguration. 56



xiii

LIST OF ABBREVIATIONS

AMBA - Advanced Microcontroller Bus Architecture

ASIC - Application-Specific Integrated Circuit

AXI - Advanced eXtensible Interface

BRAM - Block Random-Access Memory

CAM - Content-Addressable Memory

CLB - Configurable Logic Block

CPLD - Complex Programmable Logic Device

CPU - Central Processing Unit

DDR SDRAM - Double Data Rate Synchronous Dynamic Random-
Access Memory

DMA - Direct Memory Access

EDK - Embedded Development Kit

EPROM - Erasable Programmable Read Only Memory

EEPROM - Electrically Erasable Programmable Read Only Memory

FIFO - First In, First Out

FPGA - Field-Programmable Gate Array

GPP - General Purpose Processor

HDL - Hardware Description Language

ICAP - Internal Configuration Access Port

ICON - Integrated CONtroller

IDS - Intrusion Detection System

ILA - Integrated Logic Analyzer

I/O - Input/Output

IP - Internet Protocol

IPS - Intrusion Prevention System

ISE - Integrated Software Environment

JTAG - Joint Test Action Group

LUT - LookUp Table

MAC - Media Access Control

NIC - Network Interface Controller



xiv

NIDS - Network Intrusion Detection System

OPB - On-chip Peripheral Bus

PC - Personal Computer

PLB - Processor Local Bus

PRM - Partial Reconfigurable Module

PRR - Partial Reconfigurable Region

RFC - Request for Comments

SDK - Software Development Kit

SDRAM - Synchronous Dynamic Random-Access Memory

SFP - Small Form-factor Pluggable

SoC - Systems-on-Chip

SoPC - System-on-Programmable-Chip

SRAM - Static Random-Access Memory

TCP - Transmission Control Protocol

UART - Universal Asynchronous Receiver/Transmitter

UDP - User Datagram Protocol

VHDL - Very High Speed Integrated Circuit Hardware Description
Language

XPS - Xilinx Platform Studio



xv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A List of Publication 66



CHAPTER 1

INTRODUCTION

1.1 Reconfigurable Computing as a Paradigm Shift in Computing

The inefficiency [1, 2] of the von Neumann machine paradigm [3] leads to
integration of both von Neumann central processing unit (instruction driven) and
non-von Neumann accelerators (data driven) implementation [2]. This is because
instruction stream execution of von Neumann machine requires a lot of memory
cycles. Currently, the focus of implementation has shifted towards replacing hardwired
accelerators with reconfigurable devices. This approach offers better flexibility
[4] and contributes to the emergence of reconfigurable computing techniques and
methodologies.

Systems-on-Chip (SoC) becomes a common implementation solution in
electronic systems but it lacks the flexibility to cope with the rapid changes of
functionality requirement. A reconfigurable device with large number of logic
elements becomes a good alternative to SoC by offering flexibility at the cost of
performance. This results in the emergence of System-on-Programmable-Chip (SoPC)
[5], which implement a system-on-chip consisting intellectual property (IP) cores,
general-purpose processor (GPP) and custom hardware in a single reconfigurable
device. To apply changes and updates to the custom hardware in the reconfigurable
device, a new partial bitstream is loaded to the reconfigurable device at run time. This
leads to the requirement of a good framework for remote dynamically reconfigurable
platform.



2

1.2 Dynamic Reconfiguration in Network Processing Unit

Telecommunication bandwidth is expected to grow at a rate three times higher
than computation processing capability [6]. This trend clearly shows that high
performance requirement, especially throughput requirement is critical in network
processing units to cope with the growing demands for bandwidth [7]. Application-
specific integrated circuit (ASIC) design is a possible implementation solution as
it enables low-level parallelism and processing of packets in deep pipeline [8].
Unfortunately, ASIC designs are inflexible and do not allow functional updates. Thus,
ASICs usually have limited lifetime in the market due to their incapability to adapt to
changes. ASIC implementation also requires longer time to be designed, fabricated
and tested, compared to other implementation alternatives.

The flexibility to do functional update is an important requirement in network
processing [9] as it would allow network applications to remain updated from time
to time and prolongs its lifetime in the market. Flexibility requirements come when
some of the execution requirements are not known during the design time or may
change over time in unforeseen ways. For instance, firewall implemented in ASIC
could only protect the networks from known threats during its design time [8].
Network processing units implemented in software can have functional updates but
the execution is very low in performance, especially the throughput. For example,
throughput of software-based router in packet processing is slower than hardware-
based router in several orders of magnitude [7]. This limitation is very significant,
as network application requires throughput to cope with the growing demands for
bandwidth [7]. In short, both performance and flexibility are important for network
application devices.

Field-programmable gate array (FPGA) is a good option to implement
network application devices because FPGA implementation can offer desirable balance
between flexibility and performance. FPGA has both performance advantages of ASIC
solution and flexibility advantage of software solution [7]. For instance, firewall
implemented in reconfigurable device is able to achieve significant improvements in
performance and security [10]. The system flexibility comes from the reconfigurability
feature in the FPGA devices and is used to update the system when new security threats
is found [10]. With the performance and flexibility offered by reconfigurable device,
NetFPGA [11] has emerged as a network application prototyping platform that utilizes
FPGA devices.



3

Most network application especially middleboxes are required to operate in
high throughput and are distributed. Additionally, middleboxes are required to remain
active and operate continuously so that their connectivity with end nodes is maintained
and it can be updated remotely. Thus, the cost to apply updates to such system is very
high. This problem can be solved by utilizing dynamic reconfiguration feature found in
reconfigurable devices. However, utilization of dynamic reconfiguration feature is not
straightforward and requires proper methodology in the design process. Therefore,
a good framework that is able to efficiently perform dynamic reconfiguration in
reconfigurable devices is required in network applications.

1.3 Problem Statement

Extant works have shown that reconfigurable devices is a good solution for
implementation that requires both performance and flexibility [7–9, 12, 13]. There
are many works that have been proposed using reconfigurable device to achieve
performance advantage. However, works on exploiting the flexibility in reconfigurable
device are still limited. The reason lies on the fact that dynamic reconfiguration is
of recent interest and is only supported by limited family of reconfigurable devices.
Additionally, proper methodology in the design process is required to utilize dynamic
reconfiguration.

Remote dynamic reconfiguration is capable to cope with rapid functional
changes for system implemented in reconfigurable devices. To achieve this, partial
bitstream should be loaded into these reconfigurable devices in the most generic and
efficient way. However, some recent works [14–20] achieved partial reconfiguration
by using General Purpose Processor embedded in the design. This requires additional
logic resources and longer time to perform partial reconfiguration. Additionally,
some of the works in [15, 19–24] used shared bus structure, which may restrict other
components from using it during reconfiguration process [25].

NetFPGA development board is a network application FPGA development
board. Previous works [10, 26] show that the NetFPGA development board has the
potential to be developed into a remote dynamically reconfigurable platform. This
is because NetFPGA uses reconfigurable device that support dynamic reconfiguration
feature and also provide well-established communication framework. Recently, [26]
implemented a network application that uses the partial reconfiguration in NetFPGA



4

development board. However, JTAG interface is used to load the partial bitstream into
the FPGA device, which requires longer reconfiguration time [15]. Zhang et al. [10]
have designed a remote dynamically reconfigurable security system using NetFPGA
development board. However, the remote dyanmic reconfiguration rely on host PC for
bitstream transmission and translation, which is inefficient.

1.4 Research Objectives

Based on the background studies and existing issues, the aim of this thesis is
to design and implement a remote dynamically reconfigurable platform. The main
objectives of this research work are:

1. To design and implement a remote dynamically reconfigurable platform using
NetFPGA development board. The developed platform does not rely on GPP
or host computer to handle the dynamic reconfiguration process. Instead, the
reconfiguration controller has been implemented using existing logic resources
in the reconfigurable device itself. The application implemented using the
developed platform should be able to be updated remotely through the Ethernet
connection.

2. To design and implement a remote dynamically reconfigurable middlebox
for network protection scheme. The packet-forwarding algorithm in the
developed middlebox should be able to be updated remotely through the
Ethernet connection. The network protection application implemented using the
developed middlebox should be able to be updated remotely through the UDP/IP
connection.

1.5 Scope of Work

Based on the research objectives and available resources, the scope of this
research are as follow:

1. The design of remote dynamically reconfigurable platform excludes authen-
tication mechanism. Authentication mechanism is not in the scope of work



5

because it is an optional feature and this feature can be extended to the developed
platform when the application requires it.

2. The partial bitstream is not encrypted for dynamic reconfiguration. Partial
bitstream encryption is not in the focus of this work as it is an optional feature as
this feature can be included afterward depending on application requirements.

3. The case studies of network protection are targeted for stateless Network
Intrusion Prevention System (NIPS) and port based firewall. However, other
applications can still be implemented using the developed platform as the
developed platform is functionally extensible.

4. The developed platform supports packets size up to 2048 Bytes, which is larger
than the maximum transmission unit of Ethernet V2. However, the packets size
can be increased by adjusting the depth of FIFO used.

5. The size of each bistream packets are limited to 1016 Bytes. Even so, the size of
the bitstream packet can be increased by adjusting the depth of FIFO.

1.6 Research Contributions

This thesis contributes to two research contributions. The first contribution
is the architecture for remote dynamically reconfigurable platform on NetFPGA 10G
development boards. The proposed architecture supports remote update on the packet-
forwarding mechanism, which allows high degree of customization and optimization
after system deployment. With the proposed architectures, most existing network
applications from NetFPGA repository [27] can be updated remotely when integrated
into the implemented platform.

The second contribution is the architecture of a customized reconfiguration
controller using available logic resources in the FPGA device. The design effort
results in higher efficiency in the dynamic reconfiguration process and utilization in
logic resources. Additionally, the dynamic reconfiguration process can be handled
internally by the implemented reconfiguration controller, therefore reduces external
component dependency. Combination of both contributions result in a better design
and implementation alternative for remote dynamically reconfigurable platform, which
is resource-efficient and processing efficient.



6

1.7 Thesis Organization

The rest of this thesis is organized based on the following structure.

Chapter 2 covers literature review of this research, which are related theoretical
background and related works. Discussion on literatures mainly focus on dynamic
reconfiguration and network applications.

Chapter 3 describes methodology to achieve the research objectives.
This includes explanation on the architecture components, implementation flow,
development environment and verification techniques.

Chapter 4 presents details on design and implementation of the proposed
platform using NetFPGA development board. This chapter also includes evaluation
of the implemented platform for verification and benchmark purposes.

Chapter 5 provides a case study of network protection application using the
implemented remote dynamically reconfigurable platform.

Chapter 6 summarizes this thesis, stating contributions and limitations of this
research and provides suggestions for future research.



REFERENCES

1. Cardoso, J. and Hübner, M. Reconfigurable Computing: From FPGAs to

Hardware/Software Codesign. New York: Springer. 2011.

2. Hartenstein, R. The von Neumann Syndrome. Stamatis Vassiliadis Memorial

Symposium. Delft, Netherlands. 2007. 1–7.

3. Von Neumann, J. First Draft of a Report on the EDVAC. Annals of the History

of Computing, IEEE, 1993. 15(4): 27–75.

4. Becker, J. and Hartenstein, R. Configware and morphware going mainstream.
Journal of Systems Architecture, 2003. 49(4): 127–142.

5. Hamblen, J. O. and Hall, T. S. Using System-on-a-Programmable-Chip
Technology to Design Embedded Systems. International Journal of Computer

Applications, 2006. 13(3): 1–11.

6. Kocovic, P. Four laws for today and tomorrow. Journal of Applied Research

and Technology, 2008. 6(3): 133–146.

7. Lockwood, J. W., Naufel, N., Turner, J. S. and Taylor, D. E. Reprogrammable
network packet processing on the field programmable port extender (FPX).
Proceedings of the 2001 ACM/SIGDA ninth international symposium on Field

programmable gate arrays. Monterey, CA, USA. 2001. 87–93.

8. Lockwood, J. W., Neely, C., Zuver, C., Moscola, J., Dharmapurikar, S. and
Lim, D. An extensible, system-on-programmable-chip, content-aware Internet
firewall. In: Field Programmable Logic and Application. Springer Berlin
Heidelberg. 859–868. 2003.

9. Lockwood, J. W. An Open Platform for Development of Network Processing
Modules in Reprogrammable Hardware. IEC DesignCon’01. Santa Clara, CA,
USA. 2001. 9–19.

10. Zhang, K., Ding, X., Xiong, K., Yu, B. and Dai, S. RSS: A Reconfigurable
Security System Designed on NetFPGA and Virtex5-LX110T. 1st European

NetFPGA Developers Workshop. Cambridge, England, UK. 2010.

11. Naous, J., Gibb, G., Bolouki, S. and McKeown, N. NetFPGA: Reusable router



61

architecture for experimental research. Proceedings of the ACM workshop on

Programmable routers for extensible services of tomorrow. Seattle, WA, USA.
2008. 1–7.

12. Lockwood, J. W., Moscola, J., Reddick, D., Kulig, M. and Brooks, T.
Application of hardware accelerated extensible network nodes for internet
worm and virus protection. In: Active Networks. Springer Berlin Heidelberg.
44–57. 2004.

13. Bobda, C. Introduction to Reconfigurable Computing: Architectures,

algorithms and applications. Netherlands: Springer. 2007.

14. Castillo, J., Huerta, P., Lopez, V. and Martinez, J. I. A secure self-reconfiguring
architecture based on open-source hardware. International Conference on

Reconfigurable Computing and FPGAs, 2005. ReConFig 2005. Puebla City,
Mexico. 2005. 7–13.

15. Krifa, M. N., Ouni, B. and Mtibaa, A. Exploring the self reconfiguration of
FPGA: Design flow, architecture and performance. International Journal on

Computer Science and Engineering, 2011. 3(4): 1713–1720.

16. Blodget, B., James-Roxby, P., Keller, E., McMillan, S. and Sundararajan, P. A
self-reconfiguring platform. In: Field Programmable Logic and Application.
Springer Berlin Heidelberg. 565–574. 2003.

17. Ismaili, Z. E. A. A. and Moussa, A. Self-Partial and Dynamic Reconfiguration
Implementation for AES using FPGA. International Journal of Computer

Science Issues (IJCSI), 2009. 1(2): 33–40.

18. Paulsson, K., Hübner, M. and Becker, J. Dynamic power optimization
by exploiting self-reconfiguration in Xilinx Spartan 3-based systems.
Microprocessors and Microsystems, 2009. 33(1): 46–52.

19. Lagger, A., Upegui, A., Sanchez, E. and Gonzalez, I. Self-reconfigurable
pervasive platform for cryptographic application. International Conference on

Field Programmable Logic and Applications, 2006. FPL’06. Madrid, Spain.
2006. 1–4.

20. Williams, J. A. and Bergmann, N. W. Embedded Linux as a platform
for dynamically self-reconfiguring systems-on-chip. Ersa’04: the 2004

International Conference On Engineering of Reconfigurable Systems and

Algorithms. Nevada, USA. 2004. 163–169.

21. Cuoccio, A., Grassi, P. R., Rana, V., Santambrogio, M. D. and Sciuto, D. A
generation flow for self-reconfiguration controllers customization. 4th IEEE

International Symposium on Electronic Design, Test and Applications, 2008.



62

DELTA 2008. Hong Kong, China. 2008. 279–284.

22. Claus, C., Muller, F. H., Zeppenfeld, J. and Stechele, W. A new framework
to accelerate Virtex-II Pro dynamic partial self-reconfiguration. IEEE

International Parallel and Distributed Processing Symposium, 2007. IPDPS

2007. Long Beach, CA, USA. 2007. 1–7.

23. Bomel, P., Crenne, J., Ye, L., Diguet, J.-P. and Gogniat, G. Ultra-fast
downloading of partial bitstreams through ethernet. In: Architecture of

Computing Systems–ARCS 2009. Springer Berlin Heidelberg. 72–83. 2009.

24. Bomel, P., Gogniat, G. and Diguet, J.-P. A networked, lightweight and partially
reconfigurable platform. In: Reconfigurable Computing: Architectures, Tools

and Applications. Springer Berlin Heidelberg. 318–323. 2008.

25. Hoffman, J. C. and Pattichis, M. S. A high-speed dynamic partial
reconfiguration controller using direct memory access through a multiport
memory controller and overclocking with active feedback. International

Journal of Reconfigurable Computing, 2011. 2011: 1–10.

26. Yin, D., Unnikrishnan, D., Liao, Y., Gao, L. and Tessier, R. Customizing
virtual networks with partial FPGA reconfiguration. Proceedings of the

second ACM SIGCOMM workshop on Virtualized infrastructure systems and

architectures. New Delhi, India. 2010. 57–64.

27. NetFPGA GitHub Organization. Published online, 2014. URL https://

github.com/NetFPGA.

28. Schallenberg, A. Dynamic partial self-reconfiguration: Quick modeling,

simulation, and synthesis. Germany: Suedwestdeutscher Verlag fuer
Hochschulschriften. 2010.

29. Fons Lluis, F. Embedded Electronic Systems Driven by Run-time

Reconfigurable Hardware. Ph.d. dissertation. Universitat Rovira i Virgili.
2012.

30. Partial Reconfiguration in the ISE Design Suite. Published
online, 2014. URL http://www.xilinx.com/tools/

partial-reconfiguration.htm.

31. Morford, C. J. BitMat-Bitstream Manipulation Tool for Xilinx FPGAs. Master
dissertation. Virginia Polytechnic Institute and State University. 2005.

32. NetFPGA. Published online, 2014. URL http://netfpga.org/.

33. Kuwatly, I., Sraj, M., Al Masri, Z. and Artail, H. A dynamic honeypot design
for intrusion detection. IEEE/ACS International Conference on Pervasive

https://github.com/NetFPGA
https://github.com/NetFPGA
http://www.xilinx.com/tools/partial-reconfiguration.htm
http://www.xilinx.com/tools/partial-reconfiguration.htm
http://netfpga.org/


63

Services, 2004. ICPS 2004. Beirut, Lebanon. 2004. 95–104.

34. Park, K. and Kim, H. Remote FPGA reconfiguration using MicroBlaze or

PowerPC processors. Xilinx, 2005. Application Note: XAPP441 (v1. 1) ed.

35. Mesquita, D., Moraes, F., Palma, J., Möller, L. and Calazans, N. Remote
and Partial Reconfiguration of FPGAs: Tools and Trends. Proceedings of the

17th International Symposium on Parallel and Distributed Processing. Nice,
France. 2003. 177–185.

36. Muhlbach, S. and Koch, A. A dynamically reconfigured network platform
for high-speed malware collection. 2010 International Conference on

Reconfigurable Computing and FPGAs (ReConFig). Quintana Roo, Mexico.
2010. 79–84.

37. Muhlbach, S. and Koch, A. A dynamically reconfigured multi-FPGA
network platform for high-speed malware collection. International Journal

of Reconfigurable Computing, 2012. 2012(4): 1–14.

38. Sato, T. and Fukase, M.-a. Reconfigurable hardware implementation of host-
based IDS. The 9th Asia-Pacific Conference on Communications, 2003. APCC

2003. Penang, Malaysia. 2003, vol. 2. 849–853.

39. Song, H., Sproull, T., Attig, M. and Lockwood, J. Snort offloader: A
reconfigurable hardware NIDS filter. International Conference on Field

Programmable Logic and Applications, 2005. Tampere, Finland. 2005. 493–
498.

40. Li, S., Torresen, J. and Soraasen, O. Exploiting reconfigurable hardware
for network security. 11th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines, 2003. FCCM 2003. Napa, CA, USA. 2003.
292–293.

41. Tummala, A. K. and Patel, P. Distributed IDS using reconfigurable hardware.
IEEE International Parallel and Distributed Processing Symposium, 2007.

IPDPS 2007. Long Beach, CA, USA. 2007. 1–6.

42. Pontarelli, S., Greco, C., Nobile, E., Teofili, S. and Bianchi, G. Exploiting
dynamic reconfiguration for FPGA based network intrusion detection
systems. 2010 International Conference on Field Programmable Logic and

Applications (FPL). Milan, Italy. 2010. 10–14.

43. Antichi, G., Shahbaz, M., Giordano, S. and Moore, A. From 1G to 10G:
code reuse in action. First Workshop on High Performance and Programmable

Networking 2013. New York City, NY, USA. 2013. 31–37.



64

44. Wireshark. Published online, 2014. URL http://www.wireshark.

org/.

45. ModelSim PE Student Edition. Published online, 2014.
URL http://www.mentor.com/company/higher_ed/

modelsim-student-edition.

46. Visual Studio. Published online, 2014. URL http://msdn.microsoft.

com/en-us/vstudio/aa718325%28v=vs.110%29.aspx.

47. WinPcap. Published online, 2014. URL https://www.winpcap.org/.

48. ChipScope Pro Debugging Overview. Published online, 2014. URL
http://www.xilinx.com/itp/xilinx10/isehelp/ise_c_

process_analyze_design_using_chipscope.htm.

49. Platform Studio and the Embedded Development Kit (EDK). Published online,
2014. URL http://www.xilinx.com/tools/platform.htm.

50. Hubner, M., Gohringer, D., Noguera, J. and Becker, J. Fast dynamic and partial
reconfiguration data path with low hardware overhead on Xilinx FPGAs.
2010 IEEE International Symposium on Parallel & Distributed Processing,

Workshops and Phd Forum (IPDPSW). Atlanta, GA, USA. 2010. 1–8.

51. Braun, L., Paulsson, K., Kromer, H., Hubner, M. and Becker, J. Data
path driven waveform-like reconfiguration. International Conference on

Field Programmable Logic and Applications, 2008. FPL 2008. Heidelberg,
Germany. 2008. 607–610.

52. Canto, E., Lopez, M., Fons, F. et al. Self reconfiguration of embedded
systems mapped on Spartan-3. 4th International Workshop on Reconfigurable

Communication Centric SoCs (ReCoSoC 2008). Barcelona, Spain. 2008. 117–
123.

53. Gonzalez, I., Aguayo, E. and Lopez-Buedo, S. Self-reconfigurable embedded
systems on low-cost FPGAs. Micro, IEEE, 2007. 27(4): 49–57.

54. Zaidi, I., Nabina, A., Canagarajah, C. N. and Nunez-Yanez, J. Evaluating
dynamic partial reconfiguration in the integer pipeline of a FPGA-based
opensource processor. International Conference on Field Programmable Logic

and Applications, 2008. FPL 2008. Heidelberg, Germany. 2008. 547–550.

55. Tan, T. H., Ooi, C. Y., Hau, Y. W., Shaikh-Husin, N. and Marsono,
M. Remote dynamically reconfigurable platform using NetFPGA. 2014

IEEE International Symposium on Circuits and Systems (ISCAS). Melbourne,
Australia. 2014. 1239–1242.

http://www.wireshark.org/
http://www.wireshark.org/
http://www.mentor.com/company/higher_ed/modelsim-student-edition
http://www.mentor.com/company/higher_ed/modelsim-student-edition
http://msdn.microsoft.com/en-us/vstudio/aa718325%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/vstudio/aa718325%28v=vs.110%29.aspx
https://www.winpcap.org/
http://www.xilinx.com/itp/xilinx10/isehelp/ise_c_process_analyze_design_using_chipscope.htm
http://www.xilinx.com/itp/xilinx10/isehelp/ise_c_process_analyze_design_using_chipscope.htm
http://www.xilinx.com/tools/platform.htm


65

56. RFC 1700. Published online, 2014. URL http://www.ietf.org/rfc/

rfc1700.txt.

57. Kamat, R. K., Gaikwad, P. K. and Shinde, S. A. Implementation of FPGA
based firewall using behavioral synthesis. International Journal of Computer

Science and Network Security, 2010. 1(6): 199–203.

58. Ajami, R. and Dinh, A. Design a hardware network firewall on FPGA.
2011 24th Canadian Conference on Electrical and Computer Engineering

(CCECE). Niagara Falls, ON, Canada. 2011. 674–678.

59. McEwan, A. A. and Saul, J. A high speed reconfigurable firewall based on
parameterizable FPGA-based content addressable memories. The Journal of

Supercomputing, 2001. 19(1): 93–103.

60. Gan, C. G. FPGA based CAM architecture string matching for network

intrusion detection. Master dissertation. Universiti Teknologi Malaysia. 2012.

61. Attig, M., Dharmapurikar, S. and Lockwood, J. Implementation results
of bloom filters for string matching. 12th Annual IEEE Symposium on

Field-Programmable Custom Computing Machines, 2004. FCCM 2004. Napa
Valley, CA, USA. 2004. 322–323.

62. Dharmapurikar, S. and Lockwood, J. W. Fast and scalable pattern matching
for network intrusion detection systems. IEEE Journal on Selected Areas in

Communications, 2006. 24(10): 1781–1792.

63. Hieu, T. T., Thinh, T. N. and Tomiyama, S. ENREM: An efficient NFA-based
regular expression matching engine on reconfigurable hardware for NIDS.
Journal of Systems Architecture, 2013. 59(4): 202–212.

64. Sidhu, R. and Prasanna, V. K. Fast regular expression matching using FPGAs.
The 9th Annual IEEE Symposium on Field-Programmable Custom Computing

Machines, 2001. FCCM’01. Rohnert Park, CA, USA. 2001. 227–238.

65. Tian, X., Sun, Q., Huang, X. and Ma, Y. A dynamic online traffic classification
methodology based on data stream mining. 2009 WRI World Congress on

Computer Science and Information Engineering. Los Angeles, CA, USA.
2009, vol. 1. 298–302.

http://www.ietf.org/rfc/rfc1700.txt
http://www.ietf.org/rfc/rfc1700.txt



