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ABSTRACT

Remote dynamically reconfigurable platforms use dynamic reconfiguration
to provide solutions for applications to cope with changes in both functional
and performance requirements. Most existing remote dynamically reconfigurable
platforms are inefficient in handling dynamic reconfiguration process. This is due
to the use of general-purpose processor in their designs or having limited partial
bitstream transmission throughput that results in long device down-time. This thesis
presents an architecture of remote dynamically reconfigurable middlebox on NetFPGA
development board. The developed platform relies on a customized reconfiguration
controller and Internal Configuration Access Port to achieve dynamic reconfiguration.
In addition, this platform uses 1Gbps Ethernet link for partial bitstreams transmission
to achieve remote update. In order to offer maximum flexibility for network
processing, this work includes an architecture that allows remote updates on packet-
forwarding as well. This allows packet-forwarding algorithm and its implementation
to be optimized or customized after deployment. A case study on network protection
using this platform is included in this thesis to verify application functionality
updates. All hardware designs are verified using ModelSim simulation and tested
experimentally using the NetFPGA development board. The developed remote
dynamically reconfigurable platform is stand-alone and can achieve remote functional
update without the need of a host computer. Based on experimental results, the
proposed platform achieves 350Mbps reconfiguration throughput, which is significant
for mass remote update as device downtime for update is reduced. The developed
platform is suitable to be used as network processing middlebox.
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ABSTRAK

Platform keboleh-tatarajahan semula dinamik secara jarak jauh menggunakan
fitur tatarajah semula dinamik untuk menyediakan penyelesaian kepada aplikasi
dalam menangani perubahan keperluan fungsian dan prestasi. Kebanyakan platform
keboleh-tatarajahan semula dinamik secara jarak jauh sedia ada adalah tidak efisien
dalam pengendalian proses pentatarajahan semula. Hal ini disebabkan penggunaan
pemproses tujuan am di dalam reka bentuk atau mempunyai kadar celus yang
sangat terhad dalam penghantaran aliran bit separa yang boleh mengakibatkan
masa henti peranti yang panjang. Tesis ini membentangkan seni bina middlebox

keboleh-tatarajahan semula dinamik secara jarak jauh dengan menggunakan papan
pembangunan NetFPGA. Platform yang telah dibangunkan bergantung kepada
pengawal pentatarajahan semula tersuai dan port capaian tatarajah semula dalaman
untuk mencapai pentatarajahan semula secara dinamik. Di samping itu, platform
ini menggunakan pautan Ethernet selaju 1Gbps dalam penghantaran aliran bit separa
untuk melaksanakan kemas kini secara jarak jauh. Dalam usaha untuk menawarkan
kelenturan maksimum untuk pemprosesan rangkaian, kerja ini juga merangkumi satu
seni bina yang membolehkan kemas kini jarak jauh pada algoritma ajuan paket. Hal
ini membolehkan algoritma ajuan paket dan implementasinya dioptimumkan atau
disesuaikan selepas kerah tugas. Satu kajian kes dalam perlindungan rangkaian dengan
menggunakan platform ini terkandung dalam tesis ini untuk menentusahkan kemas
kini fungsian aplikasi. Semua reka bentuk perkakasan telah ditentusahkan dengan
menggunakan simulasi ModelSim dan diuji secara eksperimen dengan menggunakan
papan pembangunan NetFPGA. Platform keboleh-tatarajahan semula dinamik secara
jarak jauh yang telah dibangunkan boleh berfungsi secara kendiri dan dapat mencapai
kemas kini fungsian secara jarak jauh tanpa memerlukan komputer hos. Berdasarkan
keputusan eksperimen, platform yang dicadangkan dapat mencapai kadar celus
pentatarajahan semula sebanyak 350Mbps, yakni penting kepada kemas kini jarak jauh
secara besar-besaran kerana masa henti peranti semasa kemas kini telah disingkatkan.
Platform yang telah dibangunkan sesuai diguna sebagai peranti perantaraan dalam
pemprosesan rangkaian.
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CHAPTER 1

INTRODUCTION

1.1 Reconfigurable Computing as a Paradigm Shift in Computing

The inefficiency [1, 2] of the von Neumann machine paradigm [3] leads to
integration of both von Neumann central processing unit (instruction driven) and
non-von Neumann accelerators (data driven) implementation [2]. This is because
instruction stream execution of von Neumann machine requires a lot of memory
cycles. Currently, the focus of implementation has shifted towards replacing hardwired
accelerators with reconfigurable devices. This approach offers better flexibility
[4] and contributes to the emergence of reconfigurable computing techniques and
methodologies.

Systems-on-Chip (SoC) becomes a common implementation solution in
electronic systems but it lacks the flexibility to cope with the rapid changes of
functionality requirement. A reconfigurable device with large number of logic
elements becomes a good alternative to SoC by offering flexibility at the cost of
performance. This results in the emergence of System-on-Programmable-Chip (SoPC)
[5], which implement a system-on-chip consisting intellectual property (IP) cores,
general-purpose processor (GPP) and custom hardware in a single reconfigurable
device. To apply changes and updates to the custom hardware in the reconfigurable
device, a new partial bitstream is loaded to the reconfigurable device at run time. This
leads to the requirement of a good framework for remote dynamically reconfigurable
platform.
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1.2 Dynamic Reconfiguration in Network Processing Unit

Telecommunication bandwidth is expected to grow at a rate three times higher
than computation processing capability [6]. This trend clearly shows that high
performance requirement, especially throughput requirement is critical in network
processing units to cope with the growing demands for bandwidth [7]. Application-
specific integrated circuit (ASIC) design is a possible implementation solution as
it enables low-level parallelism and processing of packets in deep pipeline [8].
Unfortunately, ASIC designs are inflexible and do not allow functional updates. Thus,
ASICs usually have limited lifetime in the market due to their incapability to adapt to
changes. ASIC implementation also requires longer time to be designed, fabricated
and tested, compared to other implementation alternatives.

The flexibility to do functional update is an important requirement in network
processing [9] as it would allow network applications to remain updated from time
to time and prolongs its lifetime in the market. Flexibility requirements come when
some of the execution requirements are not known during the design time or may
change over time in unforeseen ways. For instance, firewall implemented in ASIC
could only protect the networks from known threats during its design time [8].
Network processing units implemented in software can have functional updates but
the execution is very low in performance, especially the throughput. For example,
throughput of software-based router in packet processing is slower than hardware-
based router in several orders of magnitude [7]. This limitation is very significant,
as network application requires throughput to cope with the growing demands for
bandwidth [7]. In short, both performance and flexibility are important for network
application devices.

Field-programmable gate array (FPGA) is a good option to implement
network application devices because FPGA implementation can offer desirable balance
between flexibility and performance. FPGA has both performance advantages of ASIC
solution and flexibility advantage of software solution [7]. For instance, firewall
implemented in reconfigurable device is able to achieve significant improvements in
performance and security [10]. The system flexibility comes from the reconfigurability
feature in the FPGA devices and is used to update the system when new security threats
is found [10]. With the performance and flexibility offered by reconfigurable device,
NetFPGA [11] has emerged as a network application prototyping platform that utilizes
FPGA devices.
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Most network application especially middleboxes are required to operate in
high throughput and are distributed. Additionally, middleboxes are required to remain
active and operate continuously so that their connectivity with end nodes is maintained
and it can be updated remotely. Thus, the cost to apply updates to such system is very
high. This problem can be solved by utilizing dynamic reconfiguration feature found in
reconfigurable devices. However, utilization of dynamic reconfiguration feature is not
straightforward and requires proper methodology in the design process. Therefore,
a good framework that is able to efficiently perform dynamic reconfiguration in
reconfigurable devices is required in network applications.

1.3 Problem Statement

Extant works have shown that reconfigurable devices is a good solution for
implementation that requires both performance and flexibility [7–9, 12, 13]. There
are many works that have been proposed using reconfigurable device to achieve
performance advantage. However, works on exploiting the flexibility in reconfigurable
device are still limited. The reason lies on the fact that dynamic reconfiguration is
of recent interest and is only supported by limited family of reconfigurable devices.
Additionally, proper methodology in the design process is required to utilize dynamic
reconfiguration.

Remote dynamic reconfiguration is capable to cope with rapid functional
changes for system implemented in reconfigurable devices. To achieve this, partial
bitstream should be loaded into these reconfigurable devices in the most generic and
efficient way. However, some recent works [14–20] achieved partial reconfiguration
by using General Purpose Processor embedded in the design. This requires additional
logic resources and longer time to perform partial reconfiguration. Additionally,
some of the works in [15, 19–24] used shared bus structure, which may restrict other
components from using it during reconfiguration process [25].

NetFPGA development board is a network application FPGA development
board. Previous works [10, 26] show that the NetFPGA development board has the
potential to be developed into a remote dynamically reconfigurable platform. This
is because NetFPGA uses reconfigurable device that support dynamic reconfiguration
feature and also provide well-established communication framework. Recently, [26]
implemented a network application that uses the partial reconfiguration in NetFPGA
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development board. However, JTAG interface is used to load the partial bitstream into
the FPGA device, which requires longer reconfiguration time [15]. Zhang et al. [10]
have designed a remote dynamically reconfigurable security system using NetFPGA
development board. However, the remote dyanmic reconfiguration rely on host PC for
bitstream transmission and translation, which is inefficient.

1.4 Research Objectives

Based on the background studies and existing issues, the aim of this thesis is
to design and implement a remote dynamically reconfigurable platform. The main
objectives of this research work are:

1. To design and implement a remote dynamically reconfigurable platform using
NetFPGA development board. The developed platform does not rely on GPP
or host computer to handle the dynamic reconfiguration process. Instead, the
reconfiguration controller has been implemented using existing logic resources
in the reconfigurable device itself. The application implemented using the
developed platform should be able to be updated remotely through the Ethernet
connection.

2. To design and implement a remote dynamically reconfigurable middlebox
for network protection scheme. The packet-forwarding algorithm in the
developed middlebox should be able to be updated remotely through the
Ethernet connection. The network protection application implemented using the
developed middlebox should be able to be updated remotely through the UDP/IP
connection.

1.5 Scope of Work

Based on the research objectives and available resources, the scope of this
research are as follow:

1. The design of remote dynamically reconfigurable platform excludes authen-
tication mechanism. Authentication mechanism is not in the scope of work
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because it is an optional feature and this feature can be extended to the developed
platform when the application requires it.

2. The partial bitstream is not encrypted for dynamic reconfiguration. Partial
bitstream encryption is not in the focus of this work as it is an optional feature as
this feature can be included afterward depending on application requirements.

3. The case studies of network protection are targeted for stateless Network
Intrusion Prevention System (NIPS) and port based firewall. However, other
applications can still be implemented using the developed platform as the
developed platform is functionally extensible.

4. The developed platform supports packets size up to 2048 Bytes, which is larger
than the maximum transmission unit of Ethernet V2. However, the packets size
can be increased by adjusting the depth of FIFO used.

5. The size of each bistream packets are limited to 1016 Bytes. Even so, the size of
the bitstream packet can be increased by adjusting the depth of FIFO.

1.6 Research Contributions

This thesis contributes to two research contributions. The first contribution
is the architecture for remote dynamically reconfigurable platform on NetFPGA 10G
development boards. The proposed architecture supports remote update on the packet-
forwarding mechanism, which allows high degree of customization and optimization
after system deployment. With the proposed architectures, most existing network
applications from NetFPGA repository [27] can be updated remotely when integrated
into the implemented platform.

The second contribution is the architecture of a customized reconfiguration
controller using available logic resources in the FPGA device. The design effort
results in higher efficiency in the dynamic reconfiguration process and utilization in
logic resources. Additionally, the dynamic reconfiguration process can be handled
internally by the implemented reconfiguration controller, therefore reduces external
component dependency. Combination of both contributions result in a better design
and implementation alternative for remote dynamically reconfigurable platform, which
is resource-efficient and processing efficient.
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1.7 Thesis Organization

The rest of this thesis is organized based on the following structure.

Chapter 2 covers literature review of this research, which are related theoretical
background and related works. Discussion on literatures mainly focus on dynamic
reconfiguration and network applications.

Chapter 3 describes methodology to achieve the research objectives.
This includes explanation on the architecture components, implementation flow,
development environment and verification techniques.

Chapter 4 presents details on design and implementation of the proposed
platform using NetFPGA development board. This chapter also includes evaluation
of the implemented platform for verification and benchmark purposes.

Chapter 5 provides a case study of network protection application using the
implemented remote dynamically reconfigurable platform.

Chapter 6 summarizes this thesis, stating contributions and limitations of this
research and provides suggestions for future research.
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