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ABSTRACT

Numerical investigations are conducted using finite volume method of study 

the laminar convective heat transfer and nanofluids flows through a circular tube 

fitted with helical tape insert. The continuity, momentum and energy equations are 

discretized and the SIMPLE algorithm scheme is applied to link the pressure and 

velocity fields inside the domain for plain tube and four different twist ratios of 1.95­

4.89, two different types of nanoparticles, Al2O3 and SiO2 with different nanoparticle 

shapes of spherical, cylindrical and platelets, 0.5-2.0 % volume fraction in base fluid 

(water) and nanoparticle diameter of 20-50 nm. The wall of tube was maintained at 

uniform heat flux. In this project, several parameters such as boundary condition 

(different Reynolds number), types of fluids (base fluid with different type of 

nanoparticles), different nanoparticle shapes, different volume fraction and different 

particle diameter are investigated to identify their effect on the heat transfer and fluid 

flow through a circular tube fitted with helical tape insert geometries. The numerical 

results indicate that the four types of Nanofluid achieved higher Nusselt number than 

pure water. Nanofluid with Al2O3 particle achieved the highest Nusselt number. For 

all the cases Nusselt number increased with the increase of Reynolds number and 

Nusselt number will increase through a circular tube fitted with helical tape insert 

with decrease of twist ratio.
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ABSTRAK

Siasatan berangka dijalankan menggunakan kaedah isipadu terhingga kajian 

lamina pemindahan haba perolakan dan nanofluids mengalir melalui tiub bulat 

dipasang dengan memasukkan pita heliks. Kesinambungan, momentum dan tenaga 

persamaan adalah discretized dan skim algoritma MUDAH digunakan untuk 

menghubungkan tekanan dan halaju bidang dalam domain untuk tiub kosong dan 

empat nisbah twist yang berbeza 1,95-4,89, dua jenis nanopartikel, Al2O3 dan SiO2 

dengan berbeza bentuk nanopartikel daripada sfera, silinder dan platelet, 0.5-20%  

pecahan isipadu cecair dalam asas (air) dan diameter nanopartikel daripada 20-50 

nm. Dinding tiub dikekalkan pada fluks haba seragam. Dalam projek ini, beberapa 

parameter seperti keadaan sempadan (nombor Reynolds yang berbeza), jenis cecair 

(cecair asas dengan pelbagai jenis partikel nano), bentuk nanopartikel yang berbeza, 

pecahan isipadu yang berbeza dan diameter zarah berbeza disiasat untuk 

mengenalpasti kesannya terhadap pemindahan haba dan aliran cecair melalui tiub 

bulat dipasang dengan heliks geometri memasukkan pita. Keputusan berangka 

menunjukkan bahawa empat jenis Nanofluid mencapai nombor Nusselt lebih tinggi 

daripada air tulen. Nanofluid dengan Al2O3 zarah mencapai nombor Nusselt 

tertinggi. Bagi semua kes Nusselt jumlah meningkat dengan pertambahan nombor 

Reynolds dan nombor Nusselt akan meningkat melalui tiub bulat dipasang dengan 

memasukkan pita heliks dengan penurunan nisbah twist.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Heat exchangers application in industrial and engineering purposes are quiet 

popular. The need of analysis on heat transfer rate, efficiency and pressure drop with 

respect to long-term performance and economic aspects of the equipment, caused to 

a complicated design procedure. Higher pumping cost which is caused by the rise of 

pressure drop is the price that should be paid along with the improvement in the heat 

transfer rate by insert technologies and this is the reason to implement optimization 

on any methods or augmentation device which is about to be utilized in the heat 

exchanger between the benefits of higher heat transfer rate and higher frictional 

losses [ 1] .

In general, methods of heat transfer enhancement are classified into three 

broad categories which will be explained.

1.1.1 Active method

In this method, the enhancement of heat transfer is caused by some external 

power input. Reciprocating plungers, use of magnetic field, surface vibration, fluid 

vibration, electrostatic fields, suction or injection and jet impingement are some 

examples which bring enhancement with some external power [2] .
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1.1.2 Passive method

In passive methods, surface and geometrical modifications which are applied 

to the flow passage and implementation of inserts or additional devices are used to 

augment the heat transfer rate. Inserts, swirl flow devices, treated surface, rough 

surface, extended surfaces, displaced enhancement devices, coiled tubes, surface 

tension devices and additives for fluids are some of the examples for passive method 

[3].

1.1.3 Compound method

Compound method is the combination of any two methods of augmentation 

which is implemented at the same time like a rough surface with twisted tape swirl 

flow device or fluid vibration [4]. This literature review is focused on the passive 

methods pipe heat exchanger. One of the applicable ways to enhance heat transfer 

rate in the convective heat transfer is to increase the effective surface area and 

residence time of the heat transfer fluids and it's  the main principle of passive 

methods to generate the swirl and disturb the boundary layer to increase the effective 

surface area, residence time and the heat transfer coefficient. There are several 

passive methods to enhance the heat transfer performance but in this article the most 

popular and related ones are mentioned:

* Displaced enhancement devices: This insert method is applied to perform 

force convection. It made the fluid displaced from heated area to cool area or 

from the bulk fluid in the middle of the duct with the fluid at the surface and 

indirectly improves the energy transfer.

* Swirl Flow devices: The axial flow's secondary recirculation and production 

of the superimposed swirl flow inside a channel is the main purpose of swirl 

flow devices and they include helical strip, cored screw and twisted tape 

inserts and they are both applicable in single and two phase flow heat 

exchangers.

* Coiled tubes: Coiled tubes are more conventional in smaller heat exchangers. 

Secondary flows are produced to augment the heat transfer coefficient.
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* Additives for liquids: Addition of solid particles, solvable additives and 

bubbles in single phase fluids reduces the surface tension and increase the 

heat transfer

Besides the theoretical experimental approaches, numerical simulation has 

established itself as the most practical and viable alternative to study and to 

understand different engineering problems. However, numerical simulations would 

not be possible without the recent developments and improvements in computers in 

terms of memory size and computing speed[5].

As the power of supercomputers have increased in terms of computing speed 

and memory capacity, the accuracy of numerical simulations for physical problems 

has also increased by adding more complexity to the laws governing the 

phenomenon or by adding more any scientific and engineering problem can be 

achieved by using numerical simulation techniques and supercomputers.

The execution of numerical simulation avoids not only the annoying 

measurement in full-scale experimental setups, but also the prohibitively expensive 

and at times construction of such devices. On the other hand, the use of theoretical 

tools to solve such problems is limited and cumbersome thus precludes reaching the 

final solution. In contrast, numerical simulations are possible only after the complete 

mathematical description of the physical phenomenon is done and often experimental 

measurements are needed in order to verify the accuracy of the numerical results. In 

this sense, some followers define the numerical simulation as the modern approach, 

which joins the theoretical and experimental approaches for studying a physical 

phenomenon [6].

Currently, numerical simulation is employed in several scientific, engineering 

and industrial areas, e.g. analysis of stability in mechanical structures, optimization 

of chemical reactions and combustion process, bonding energy and atomic collision. 

Representations of DNA three-dimensional structures and microbiological reactions, 

meteorological and weather prediction, fluid flow in turbo machinery and 

aerodynamics in vehicles, design of engineering devices involving fluid flow and 

heat transfer phenomena, etc. [5].
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Conventional fluids, such as water, engine oil and ethylene glycol are 

normally used as heat transfer fluids. Although various techniques are applied to 

enhance the heat transfer, the low heat transfer performance of these conventional 

fluids obstructs the performance enhancement and the compactness of heat 

exchangers. The use of solid particles as an additive suspended into the base fluid is 

technique for the heat transfer enhancement. Improving of the thermal conductivity 

is the key idea to improve the heat transfer characteristics of conventional fluids. 

Since a solid metal has a larger thermal conductivity than a base fluid, suspending 

metallic solid fine particles into the base fluid is expected to improve the thermal 

conductivity of that fluid. The enhancement of thermal conductivity of conventional 

fluids by the suspension of solid particles, such as millimeter- or micrometer-sized 

particles, has been well known for more than 100 years [7].

1.2 Project objectives

The objectives of three-dimensional, steady state numerical simulation of 

laminar flow in the circular tube fitted with helical tape inserts are listed as:

* To study the effect of the geometrical parameters of helical tape inserts, using 

nanofluids on thermal and flow field.

* To investigate the effects of using different nanoparticles, different 

nanoparticles shape, different nanoparticle volume fraction and different 

nanoparticle diameter on the thermal and flow field.

* To examine the effect of Reynolds numbers on the thermal and flow fields.

1.3 Scope of this study

Numerical three dimensional and steady state investigation of thermal and 

laminar flow of working fluid (water and nanofluid) inside the circular tube fitted 

with helical tape insert will be studied. The scope of this study is as follows:
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* Literature review on heat transfer characteristics in various types of helical 

tape inserts with different geometries.

* Literature review on properties of nanofluid.

* Using the ANSYS Design Modeler for modeling and ANSYS Meshing for 

meshing the tube with helical tape inserts.

* Using CFD code ANSYS FLUENT 15 software to model the internal 

nanofluid flow in the tube with helical tape insert.

* Using different Twist ratios of 1.95, 2.93, 3.91 and 4.89.

* Using different nanofluid type including Al2O3 and SiO2.

* Using different nanoparticle shapes including spherical, cylindrical and 

platelets.

* Using different nanoparticle volume fraction ^ of 0.5, 1.0, 1.5 and 2.0 %.

* Using different nanoparticle diameter d^p of 20, 30, 40 and 50nm.

* Calculating Nusselt number (Nu), Friction factor (f) and performance 

evaluation criteria index (PEC).

1.4 Dissertation Outline

This thesis is divided into five chapters as follows:

Chapter 1 contains introduction including background, objectives and scope 

of study.

Chapter 2 contains literature review which related to experimental and 

numerical, investigation of helical tape inserts using both conventional fluids and 

nanofluids and literature review on properties of nanofluid.

Chapter 3 is methodology of the research. It is comprised of mathematical 

and theoretical aspects governing equations of the fluid flow and heat transfer in 

helical tape inserts. Governing equations for thermophysical properties of nanofluids 

based on their nanoparticles shape, diameter and volume fractions are also presented. 

The geometry of numerical simulation as well as the assumptions and boundary
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conditions are explained in details. Furthermore, the computational and numerical 

method for solving the problem is elaborated.

Chapter 4 consists of three sections; the first section shows the grid 

independence test for the study. The second section presents the code validation 

results for laminar flow in the circular tube fitted with helical tape insert. The third 

section demonstrates the results of the present numerical work to investigate the 

effects of different twist ratios, nanofluids with different nanoparticle shapes, 

different nanoparticle volume fractions, different nanoparticle diameter on the 

thermal and flow fields.

Chapter 5 summarizes the conclusions obtained from the numerical 

simulation with related recommendations for future work.
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