ADVANCED ENCRYPTION STANDARD (AES) COPROCESSOR

LIM JOO SONG

UNIVERSITI TEKNOLOGI MALAYSIA

ADVANCED ENCRYPTION STANDARD (AES) COPROCESSOR

LIM JOO SONG

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Electrical - Computer & Microelectronic System)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > JUNE 2014

ABSTRACT

The purpose of this project is to design a high throughput Advanced Encryption Standard (AES) coprocessor using SystemVerilog Hardware Description Language (HDL). AES coprocessor has been widely used to offload the compute intensive cryptography tasks from the main processor due to its efficiency and performance compare to the pure software solution. Conventional AES core design using iterative loop approach is not optimized for high throughput operation. Therefore pipelined architecture is the most recommend method for high throughput design. However most of the high throughput designs tend to reliance on vendor specific features to boost the performance. This has caused the design becomes nongeneric and low portability. A bottom-up approach has being used to design the coprocessor. A non-pipelined AES coprocessor was being built first as the baseline design. Then different types of pipelined implementation were being explored for possible adoption. The throughput, size and potential enhancement are the main criteria being evaluated. It was discovered that the Full Outer-Round pipelined architecture is the most efficient design in term of throughput and size. From the analysis of the Full Outer-Round pipelined model, a novel method called Single Datapath Dual Output (SDDO) has been proposed to double the throughput of the pipelined coprocessor. Simulation results demonstrated that SDDO architecture is able to double the throughput of the pipelined design while only requires 7% of additional resource to implement.

ABSTRAK

Projek ini bertujuan mereka betuk kopemproses Advanced Encryption Standard (AES) yang berthroughput tinggi dengan menggunakan SystemVerilog HDL. Kopemproses AES telah digunakan secara meluas untuk mengambil alih tugas pengiraan intensif kriptogafi daripada pemproses utama kerana ia mempunyai kecekapan dan prestasi yang lebih tinggi daripada kaedah menggunakan preisian. Kebiasaanya reka bentuk AES yang menggunakan kaedah interaktif tidak dapat menghasilkan throughput yang tinggi. Justeru itu, seni bina pipeline adalah kaedah yang biasa disyorkan untuk tujuan membina reka bentuk yang dapat menghasilkan throughput yang tinggi. Walau bagaimana pun, kebanyakan reka bentuk yang berkemampuan tinggi biasanya bergantung kepada ciri-ciri istimewa yang ditawarkan oleh vendor tertentu untuk menjana prestasi yang tinggi. Ini menyebabkan reka bentuk tersebut tidak generik dan mempunyai kemudahalihan yang rendah. Kaedah yang digunakan untuk mereka bentuk kopemproses dalam projek ini adalah kaedah *bottom-up*, dimana kopemproses AES yang tidak berpipeline dibina dahulu untuk tujuan menjadikan reka bentuk asas. Selepas itu, berbagai jenis reka bentuk pipeline dikaji dengan terliti. Jenis kriteria yang diselidik termasuk throughput, saiz dan keupayaan peningkatan. Hasil daripada penyelidikan tersebut menunjukkan reka bina pipeline Full Outer-Round adalah lebih cekap dari segi throughput and saiz. Selain daripada itu, usaha dalam membina modal Full Outer-Round pipline telah hasilkan satu kaedah baru yang dikenali sebagai Single Datapath Dual Output (SDDO), diman ia dapat mengandakan throughput daripada kopemproses pipeline. Keputusan simulasi menunjukkan kaedah SDDO memang dapat mengandakan throughput reka bina pipeline dengan hanya memerlukan penambahan sumber sebanyak 7% sahaja.

TABLE OF CONTENTS

CHAPTER			TITLE	PAGE
		DECL	ARATION	ii
		ABST	RACT	iii
		ABST	RAK	iv
		TABL	E OF CONTENTS	V
		LIST	OF TABLES	viii
		LIST	OF FIGURES	ix
		LIST	OF ABBREVIATIONS	xiii
		LIST	OF APPENDICES	XV
1	INT	RODUC	TION	1
	1.1	Backg	round	1
	1.2	Keywo	ord and Definition	2
	1.3	Proble	m Statement	4
	1.4	Object	ive	5
	1.5	Scope		6
	1.6	Expect	ted Result	6
2	LIT	ERATU	RE REVIEW	7
	2.1	AES a	lgorithm	7
		2.1.1	AES Encryption Algorithm	8
		2.1.2	AddRoundKey Transformation	9
		2.1.3	SubBytes Transformation	10
		2.1.4	ShiftRows Transformation	12
		2.1.5	MixColumns Transformation	12
		2.1.6	AES Decryption Algorithm	13
		2.1.7	InvSubBytes Transformation	14
		2.1.8	InvShiftRows Transformation	15

	2.1.9	InvMixColumns Transformation	16
	2.1.10	Key Expansion	16
2.2	Pipeline	d Architecture	18
	2.2.1	Outer-Round Pipeline	20
	2.2.2	Inner-Round Pipeline	21
	2.2.3	Inner and Outer-Round Pipeline Combination	22
	2.2.4	Loop Unrolling	24
2.3	Review	of Previous Works	25
	2.3.1	Previous Work 1	28
	2.3.2	Previous Work 2	28
	2.3.3	Previous Work 3	29
	2.3.4	Previous Work 4	29
	2.3.5	Previous Work 5	30
	2.3.6	Previous Work 6	30
	2.3.7	Previous Work 7	31
	2.3.8	Previous Work 8	31
	2.3.9	Previous Work 9	32
	2.3.10	Previous Work 10	32
	2.3.11	Previous Work 11	33
	2.3.12	Summary of Previous Work Review	33
DESI	GN AN	D METHODOLOGY	35
3.1	AES-12	8 Coprocessor Design	36
	3.1.1	ShiftRows Module	37
	3.1.2	MixColumns Module	39
	3.1.3	SubBytes Module	42
	3.1.4	AES 128 Module (non-pipelined Architecture)	46
	3.1.5	Round Key Generator (KeyGen)	48
	3.1.6	RTL Control Unit	51
	3.1.7	Top Level Module of the Non-pipelined AES Coprocessor	55
	3.1.8	Performance Analysis of the Non- pipelined AES Coprocessor	58
3.2	Pipeline	d AES Architecture	60
	3.2.1	Pipelined AES Core	61
	3.2.2	RTL Control Unit for Pipelined AES Coprocessor	64

3

		3.2.3	Top Level Module of the Pipelined AES	67
		3.2.4	Coprocessor Performance Analysis of the Pipelined AES Coprocessor	69
	3.3	Single	Datapath Dual Output (SDDO) Architecture	72
		3.3.1	SDDO Design Consideration and Limitation	74
		3.3.2	Pipelined AES Coprocessor with SDDO	77
		3.3.3	SDDO Modification of AES Core	78
		3.3.4	SDDO Modification of RTL Control Unit	81
		3.3.5	Top Level Module of the Pipelined SDDC AES Coprocessor	83
		3.3.6	Performance Analysis of the Pipelined SDDO AES Coprocessor	85
4	BEN	CHMA	RKING	89
	4.1	Benchr	narking With Previous Works	89
5	CON	NCLUSI	ON	92
6	SUG	GESTI	ON FOR FUTURE WORK	94
REFEREN	CES			95
Appendices	A1 - A′	7		97-118
Appendices	B1- B6			121-134
Appendices	C1 - C6	5		138-154

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	Key-Block-Round Relation	4
2.1	Summary of Previous Works	25
3.1	RTL-CS Table of the Control Unit	54
3.2	Performance Summary of Non-pipelined AES Co- processor	59
3.3	Pipelined RTL-CS Table	66
3.4	Performance Summary of Pipelined AES Coprocessor	70
3.5	Pipelined SDDO RTL-CS Table	82
3.6	Performance Comparison Summary of 3 Different Architectures	87
4.1	Benchmark of Previous Work	89
4.2	Benchmark of Current Work	91

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Input bytes, State array and Output bytes	8
2.2	AES encryption flow	9
2.3	AddRoundKey Operation	10
2.4	SubBytes Operation using S-box	11
2.5	Pipelined RTL-CS Table Pre-calculated S-box value (in hexadecimal format)	11
2.6	ShiftRow Operation	12
2.7	MixColumns Operation	12
2.8	AES decryption flow (Equivalent Inverse Cipher)	14
2.9	Pre-calculated inverse S-box value (in hexadecimal format)	15
2.10	InvShiftRows operation	15
2.11	Encryption: forward key scheduling	17
2.12	Decryption: reverse key scheduling	17
2.13	Non-pipelined 3 stages system	18
2.14	Pipelined 3 stages system	19
2.15	Non-pipelined AES	19
2.16	Partial Outer-Round Pipeline	20
2.17	Full Outer-Round Pipeline	20

2.18	Inner-Round Pipeline	21
2.19	Partial Inner-Outer Round Pipeline	23
2.20	Full Inner-Outer Round Pipeline	23
2.21	Loop-unrolling Pipeline	24
2.22	Partial Loop-unrolling Pipeline	24
3.1	Methodology Flow Chart	35
3.2	Sub-module of the AES Coprocessor	36
3.3	ShiftRows operation for the Encryption	37
3.4	ShiftRows operation for the Decryption	38
3.5	Functional Block Diagram (FBD) of ShiftRows	38
3.6	Simulation Result of the ShiftRows Module	38
3.7	DFG of MixColumns Operation for One Byte	40
3.8	Functional Block Diagram of the MixColumnWord (4 bytes)	41
3.9	Functional Block Diagram of the MixColumns Block	41
3.10	Simulation Result of the MixColumns Module	42
3.11	DFG of Inverse Multiplication	43
3.12	Functional Block Diagram of the SubBytes_Bytes module (1 byte)	44
3.13	Functional Block Diagram of the full SubBytes module (16 bytes)	45
3.14	Simulation Result of the SubBytes Module	45
3.15	Functional Block Diagram of the Non-pipelined AES 128 Module	46
3.16	Simulation Result of Non-pipelined AES 128 Module	47
3.17	Reference Sample from FIPS-197	48
3.18	Encryption: forward key scheduling	49

3.19	Decryption: reverse key scheduling	49
3.20	Functional Block Diagram of the Round Key Generator (KeyGen)	50
3.21	Simulation Result of the Key Generator	51
3.22	ASM Chart of the RTL Control Unit	52
3.23	ASM Chart and RTL Codes of the Control Unit	53
3.24	Simulation Result of the Control Unit	54
3.25	Block Diagram of the non-pipelined AES Co-processor	55
3.26	Simulation Result of the Non-pipelined AES Co- processor	57
3.27	Compilation Summary of the Non-pipelined AES Co- processor	58
3.28	Latency of the Non-pipelined AES Core	59
3.29	Outer-round Pipelined AES Core	60
3.30	Pipelined Module for Initial Round	61
3.31	Pipelined Module for 2nd to 10th Round	62
3.32	Pipelined Module for Final Round	62
3.33	Pipelined AES-128 Core Module	63
3.34	Pipelined RTL Control Algorithm	64
3.35	Pipelined ASM Chart and RTL Codes	65
3.36	Block Diagram of the Pipelined AES Coprocessor	67
3.37	Simulation Result of the Pipelined AES128 (Encryption)	68
3.38	Simulation Result of the Pipelined AES128 (Decryption)	68
3.39	Latency of the Pipelined AES Core	69
3.40	Compilation Summary of the Pipelined AES Coprocessor	69

3.41	Pipelined Architecture Speedup Chart	71
3.42	Typical CU-DU Input-Output	73
3.43	SDDO CU-DU Input-Output	73
3.44	Different between SDDO and typical Datapath	74
3.45	Undetermined load enable signal at the falling edge of clock	75
3.46	Replay of load enable signal at the falling edge of clock	76
3.47	Implementation sample of Load Enable Delay Register	76
3.48	Output Comparison between Pipelined and SDDO	77
3.49	Pipelined SDDO Module for Initial Round	78
3.50	Pipelined SDDO Module for 2nd to 10th Round	79
3.51	Pipelined SDDO Module for Final Round	80
3.52	Pipelined SDDO ASM Chart and RTL Codes	81
3.53	Pipelined SDDO AES Coprocessor	83
3.54	Simulation Result of the SDDO AES128 Coprocessor (Encryption)	84
3.55	Simulation Result showing the input data of the SDDO AES128 Coprocessor	84
3.56	Simulation Result showing the output data of the SDDO AES128 Coprocessor	85
3.57	Compilation Summary of the Pipelined SDDO AES Coprocessor	86
3.58	Latency of the Pipelined SDDO AES Core	86
3.59	Pipelined SDDO Speedup Chart	88

LIST OF ABBREVIATIONS

AES	-	Advanced Encryption Standard
NIST	-	National Institute of Standard and Technology
XOR	-	Exclusive OR operation
LUT	-	Look Up Table
RAM	-	Random Access Memory
FPGA	-	Field Programmable Gate Array
HDL	-	Hardware Description Language
Gbps	-	Gigabit per second
GF(x)	-	Galois Field of x element
SBox	-	Substitution-box
BRAM	-	Block RAM
ROM	-	Read-only Memory
MHz	-	Megahertz
DMA	-	Direct Memory Access
CPU	-	Center Processing Unit
RTL	-	Register Transfer Level
CLB	-	Configurable Logic Block
CAM	-	Content Addressable Memory
DFG	-	Data Flow Graph
CU	-	Control Unit

DU	-	Datapath Unit
KeyGen	-	Key Generator
ASM	-	Algorithmic State Machines
Mop/s	-	Mega-operation per second
CPD	-	Critical Path Delay
SDDO	-	Single Datapath Dual Output

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A1	ShiftRows module	97
A2	MixColumns Module	99
A3	SubBytes Module	102
A4	Non-pipelined AES 128 Module	106
A5	Round Key Generator (KeyGen) Module	109
A6	RTL Control Unit Module	116
A7	Top Level Module of the Non-pipelined AES Co-processor	118
B1	Pipelined Module for Initial Round	121
B2	Pipelined Module for 2nd to 10th Round	123
B3	Pipelined Module for Final Round	125
B4	Pipelined AES 128 Module	127
B5	Pipelined RTL Control Unit	131
B6	Top Level Module of the Pipelined AES Coprocessor	134
C1	Pipelined SDDO for Initial Round	138
C2	Pipelined SDDO for 2nd to 10th Round	140
C3	Pipelined SDDO for Final Round	143
C4	Pipelined SDDO AES128 Module	146
C5	Pipelined SDDO RTL CU Module	151

CHAPTER 1

INTRODUCTION

1.1 Background

Advanced Encryption Standard (AES) is security encryption standard selected by the United State National Institute of Standard and Technology (NIST) in 2001 for electronic data protection purpose [1]. The AES algorithm can be implemented in software, firmware, hardware or combination design. However, since the AES algorithm is compute intensive, the hardware implementation is the preference design due to performance and efficiency. Study shows the hardware implementation of AES algorithm is 60 times faster than the pure software approach [2]. Therefore the AES coprocessor is being widely used to offload the compute intensive cryptography tasks from the main processor.

In today environment, digital communication and data exchange becomes the essential part of modern daily lives. Everyone regardless of social and economy status will be direct or indirect impacted by how secure the data get exchanged in the communication network especially through the internet. The amount of data in the internet transection is growing exponentially due to increase demand on media content and online social networking activities. It is estimated by 2016, annual global IP traffic is forecasted to be 1.3 zeta-bytes [3]. Hence, a high throughput AES coprocessor is needed to accelerate the processing of the electronic data in real time.

AES is a subset of the Rijndael cipher developed by by Joan Daemen and Vincent Rijmen [4]. The Rijndael cipher allows data block and cipher key length in the multiple of 32 bits with a minimum of 128 bits and maximum of 256 bits. AES limits the data block length to 128 bits only and cipher key length of 128, 192 and 256 bits. AES is symmetric block cipher where a similar key is being used to perform both encryption and decryption on a fixed length block to block basis.

1.2 Keyword and Definition

The following definitions and Keyword are used throughout the document:

Advanced Encryption Standard
A collection of identical entities.
A transformation through the multiplication by a
matrix and followed by the addition of a vector.
Binary digit having a value of 0 or 1.
An array of bytes in a fixed length group. In this
document, the Block size is 16 bytes.
A group of eight bits.
Sequence of transformations that converts a plaintext to
cipher text using a Cipher Key. It is also known as
Encryption process.
Secret key that is used to encrypt or decrypt the plain
text and cipher text through the cipher process.
Result from the Cipher. Input to the Inverse Cipher.
Sequence of transformations that converts cipher text
to plain text using a Cipher Key. In this document it is
known as Decryption process.
Routine used to generate Round Keys from the Cipher
Key.

Plain text	Data input to the Cipher function. Result from the	
	Inverse Cipher	
Rijndael	Cryptopgraphic algorithm developed by Joan Daemen	
	and Vincent Rijmen.	
Round Key	Series of keys that are derived from the Cipher Key	
	using the Key Expansion routine. The keys are applied	
	during Encryption and Decryption	
State	Intermediate result from the Cipher. Can be presented	
	as a rectangular array of bytes with four rows and	
	columns.	
S-box	Non-linear substitution table used in bytes substitution	
	transformations and Key Expansion routine to perform	
	one-to-one substitution of a byte value.	
Word	Group of 32 bits that is treated either as a single entity	
	consist of 4 bytes.	
AddRoundKey	Transformation process in which a Round Key is added	
	to the State using XOR operation.	
InvMixColumns	Transformation step during the Inverse Cipher in which	
	the process is inverse of the MixColumns.	
InvShiftRows	Transformation step during the Inverse Cipher in which	
	the process is inverse of the ShiftRows.	
InvSubBytes	Transformation step during the Inverse Cipher in	
	which the process is inverse of the SubBytes	
MixColumns	Transformation step during the Cipher in which all the	
	columns of the State are mixed in a certain way to	
	produce new columns.	
Rcon	Round constant value.	
RotWord	Process of performing a cyclic permutation on a 4	
	bytes word during Key Expansion.	
ShiftRows	Transformation step during the Cipher in which the last	
	three rows of the State is cyclically shifted by different	
	offsets.	
SubBytes	Transformation step during the Cipher in which each of	

	the State bytes is substituted by byte value from the S-
	box.
SubWord	Process of taking a 4 bytes input word and applies an
	S-box to each of the 4 bytes to produce an output word
	during Key Expansion.
XOR	Exculsive-OR operation.

1.3 Problem Statement

During encryption and decryption, AES algorithm applies four different byteoriented transformations: SubBytes, ShiftRows, MixColumns and AddRoundKey in one round execution of the algorithm. A complete operation consists of applying several round of execution, depending on the Cipher Key size. Key length of 128 bits is known as AES-128, 192 bits is AES-192 and 256 bits is known as AES-256. Table 1.1 below shows the number of round required by the AES specification [1].

Table 1.1: Key-Block-Round Relation [1]

	Key Length, N _k	Block Size, N _b	Number of
	(words of 4 bytes)	(words of 4 bytes)	Rounds, N _r
AES-128	4 (128 bits)	4 (16 bytes)	10
AES-192	6 (192 bits)	4 (16 bytes)	12
AES-256	8 (256 bits)	4 (16 bytes)	14

AES encryption and decryption process involves at least 10 round of repeated transformation steps. In order to achieve that process, conventional AES processing core design normally employs iterative loop approach which is not optimized for high throughput operation. For high throughput design, pipelined architecture is well known to be the main design of choice.

The AES decryption process is mainly applying the encryption steps in the reserve order using different set of Round Key. This seems to require two different set of process sequence to perform the decryption steps. Due to this reason, most of the high throughput designed AES core only implements the encryption sequence. However, the AES algorithm allows the implementation of the Equivalent Inverse Cipher that employs the same sequence of transformation similar to the Cipher using the inverse operation. Given the minimum hardware resource overhead required for such encryption-decryption dual function design, it is desire to have a single high throughput design which combining both encryption and decryption function.

Since the AES was introduced in 2009, there has been a lot of study on how to design and implement fast and efficient AES coprocessor, especially on the FPGA device. However, most of the design is very device and vendor specific. The intention is to utilize the vendor specific feature such as Look-Up Table (LUT) logic and RAM Block to cut down the latency of the processing in order to improve the throughput. This has limited the portability of the design. A pure logic design will be preferable as it will avoid the re-design of the system when migrating from one vendor device to another.

1.4 Objective

The objective of the project is to design a high throughput Advanced Encryption Standard (AES) coprocessor with pipelining architecture. The coprocessor will support both encryption and decryption function in a single core design. The design will be as generic as possible using pure logic to allow for future portability across different technology.

1.5 Scope

The scope of the project is to design an AES128 coprocessor with pipelining capability. It involves re-designing the basic non-pipelined AES128 core from previous work to establish the baseline for performance evaluation, then enhancing the design with pipelined architecture to obtain a high throughput AES core. The design will be modeled with SystemVerilog HDL and simulate using Altera's Model-Sim program. Lastly, analysis will be done on the performance of the proposed pipelined architecture in term of throughput and area.

1.6 Expected Result

A System Verilog model of a high throughput pipelined architecture AES128 coprocessor which has throughput of more than 1.0Gbps (Gigabit per second), using pure combination logic entity. The design should be efficient when performing encryption/decryption with minimum overhead from data block to data block.

REFERENCES

- 1. National Institute of Standard and Technology (NIST) *Federal Information Processing Standards Publication 197.* November, 2001.
- 2. Hakhamaneshi, B. *A hardware implementation of the Advanced Encryption Standard (AES) algorithm using SystemVerilog.* Project Report, California State University of Sacramento; 2009.
- 3. Shetty, S. *Cisco's VNI Forecast Projects the Internet Will Be Four Times as Large in Four Years.* Press Release, CISCO, May 2012.
- 4. Joan Daemen, Vincent Rijmen. "AES Rpoposal: Rijndael", Version 2, National Institute of Standard and Technology, September, 2003.
- 5. Biglari M. et al. Maestro: A High Performance AES Encryption/Decryption System. *Proceedings of the 2013 17th CSI International Symposium on Computer Architecture and Digital Systems (CADS)*. October 30-31, 2013. Tehran, Iran: IEEE, 2013. 145-148.
- Kshirsagar, R.V and Vyawahare, M.V. FPGA Implementation of High speed VLSI Architectures for AES Algorithm. *Proceedings of the 2012 Fifth International Conference on Emerging Trends in Engineering and Technology (ICETET)*. November 5-7, 2012. Himeji, Japan: IEEE, 2012. 239-242.
- Borkar A. M. et al. FPGA Implementation of AES Algorithm. *Proceedings of the 3rd International Conference on Electronics Computer Technology* (*ICECT*). April 8-10, 2011. Kanyakumari, India: IEEE, 2011. Vol3 401-405.
- Zhang Y. and Wang. X. Pipelined implementation of AES encryption based on FPGA. *Proceedings of the 2010 IEEE International Conference on Information Theory and Information Security (ICITIS)*. Dec 17-19, 2010. Beijing. China: IEEE, 2010. 170-173.

- Jyrwa, B. and Paily, R. An Area-Throughput Efficient FPGA implementation of Block Cipher AES algorithm. *Proceedings of 2009 International Conference on Advances in Computing, Control, & Telecommunication Technologies (ACT '09).* Dec 28-29, 2009. Trivandrum, India:IEEE 328-332.
- 10. Chih-Peng Fan et al. FPGA implementations of high throughput Sequential and Fully pipelined AES algorithm. *International Journal of Electrical Engineering*, 2008. Vol 15,No 6. 447-455.
- Kaur, Swinder and Vig, R. Efficient Implementation of AES Algorithm in FPGA Device. Proceedings of 2007 International Conference on Conference on Computational Intelligence and Multimedia Applications. Dec 13-15, 2007. Sivakasi, Tamil Nadu: IEEE 179-187.
- 12. Nalini, C et al. An FPGA Based Performance Analysis of Pipelining and Unrolling of AES Algorithm. *Proceedings of International Conference on Advanced Computing and Communications (ADCOM 2006).* Dec 20-23, 2006. Surathkal: IEEE 477-482.
- 13. Kotturi, D. et al. AES Crypto Chip Utilizing High-Speed Parallel Pipelined Architecture. *Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS 2005)*. May 23-26, 2005. IEEE 4653-4656 Vol.5.
- Sever, R et al. A High speed fpga Implementation of the Rijndael Algorithm. *Proceedings of the EUROMICRO Systems on Digital System Design* (DSD'04). Aug 31-Sept 3, 2004:IEEE, 358-362.
- Saqib, N. A. et al. AES Algorithm Implementation—An efficient approach for Sequential and Pipeline Architectures. *Proceedings of the Fourth Mexican International Conference on Computer Science (ENC'03)*. Sept 8-12, 2003:IEEE 126 – 130.
- Sklavos, N et al. Architectures and VLSI Implementations of the AES-Proposal Rijndael. *IEEE Transactions on Computers 2002*. Vol. 51, Issue 12, 1454-1459.
- 17. Good, T. and Benaissa, M. AES on FPGA from the fastest to the smallest. *Proceedings of 7th International Workshop in Cryptographic Hardware and Embedded Systems – CHES 2005.* Aug 29 - Sept 1, 2005. 427-440.
- 18. Arulpaniandi. *Design of AES Encryption Core*. Project Journal Report, University Technology Malaysia; 2004.