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ABSTRACT 

 

 

 

 

This study investigates the heat transfer enhancement in asphalt collector by 

using CuO nanofluid.  In this study the first approach is based on increasing the heat 

gain which is captured by solar energy on asphalt pavement.  The second approach is 

related to accelerate the period of snow melting.  Numerical simulation method has 

been used to predict the temperature distribution in the asphalt collector.  The study 

was conducted at unsteady state, laminar fluid flow with small and large scale of 

geometry.  Certain boundary conditions and assumptions to solve the governing 

equations were implemented by using finite volume method.  Computational fluid 

dynamics software involves ANSYS FLUENT 14.0 was employed to perform the 

investigation numerically.  Using nanofluid is considered as a positive way to 

improve the performance of melting system.  The CuO Nanofluid from 1 to 4% 

volume fraction with particle diameter of 50 nm dispersed in a base fluid (water) 

were used to improve the heat transfer of asphalt collector and thus resulting in an 

augmentation of efficiency of asphalt collector.  The rise in temperature of nanofluid 

as a result of flow through asphalt pavement was used as an indicator of efficiency 

enhancement of heat capture.  The results of simulation for both small and large scale 

geometries show that the use of nanofluid can significantly enhance the efficiency of 

heat capture by bringing high amount of solar energy out.  It is also noticed that the 

asphalt collector provides us a better alternative method for snow melting.  Asphalt 

pavement temperature distribution was evaluated and the non-uniform temperature in 

the asphalt pavement is noticeable.  
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ABSTRAK 

 

 

 

 

 Kajian ini mengkaji peningkatan pemindahan haba dalam pengumpul asfalt 

dengan menggunakan bendalir nano CuO.  Dalam kajian ini pendekatan pertama 

adalah berdasarkan kepada peningkatan keuntungan haba yang ditangkap oleh tenaga 

solar pada turapan asfalt.  Pendekatan kedua adalah untuk mempercepatkan tempoh 

salji lebur.  Kaedah simulasi berangka telah digunakan untuk meramal taburan suhu 

dalam pengumpul asfalt.  Kajian ini telah dijalankan pada keadaan tak mantap, aliran 

bendalir lamina dengan skala geometri yang kecil dan besar.  Syarat sempadan 

tertentu dan andaian untuk menyelesaikan persamaan yang mengawal telah 

dilaksanakan dengan menggunakan kaedah isipadu terhingga.  Perisian melibatkan 

ANSYS FLUENT 14.0 telah digunakan untuk melakukan siasatan secara berangka.  

Penggunaan bendalir nano dianggap sebagai cara yang positif untuk meningkatkan 

prestasi sistem lebur.  Pecahan isipadu bendalir nano CuO daripada 1 hingga 4% 

dengan diameter zarah 50 nm tersebar dalam bendalir asas (air) telah digunakan  

untuk meningkatkan pemindahan haba pengumpul asfalt dan seterusnya 

meningkatkan kecekapan pengumpul asfalt.  Kenaikan suhu bendalir nano yang 

terhasil daripada aliran melalui turapan asfalt digunakan sebagai penunjuk kepada 

peningkatan kecekapan penangkapan haba.  Keputusan daripada simulasi bagi 

kedua-dua geometri berskala kecil dan besar menunjukkan bahawa penggunaan 

bendalir nano dapat meningkatkan kecekapan penangkapan haba secara signifikan 

dengan mengeluarkan sejumlah tenaga solar yang banyak.  Kajian juga mendapati 

bahawa pengumpul asfalt memberikan kita satu kaedah alternatif yang lebih baik 

untuk peleburan salji.  Pengedaran suhu bagi turapan asfalt telah dinilai dan suhu 

yang tidak seragam dalam turapan asfalt adalah ketara. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Heat transfer knowledge has been considered for decades.  High efficiency of 

heat transfer has improved not only performance of the devices, but also fuel 

consumption.  The efficiency of many devices which are needed to be heated or 

cooled is involved to heat transfer performance.  The necessity of high thermal 

performance thermal systems has been eventuated finding different ways to enhance 

the heat transfer rate. 

 

 

The reduction of fossil fuel consumption and gas emission to the atmosphere 

motivates research and development of new energy generation methods: renewable, 

clean, and respectful of the environment.  Asphalt pavement has gained more and 

more attention in recent years as an interesting new renewable energy source [1].  

The sun provides a cheap and abundant source of clean and renewable energy. 

 

 

The radiation from the Sun reaching the Earth generates heat on the ground. 

The solar radiation depends on the latitude and the angle of incidence.  From a 
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Meteorological perspective, radiation variation in world for horizontal surfaces and 

as it seems the central and northern world.  As shown in Figure 1.1, this is 

measurements of the NASA Research Center. 

 

 

 

 

Figure 1.1 The average annual solar radiation variations in world 

 

 

In asphalt solar collector (ASC), the fluid is circulated through a series of 

pipe circuits laid below pavement surface.  The irradiation from the sun and the 

atmosphere is absorbed by the pavement and then the fluid through the pipes brings 

the solar energy out and stored in the ground over summer time.  Hence, the energy 

is used for the heating of adjacent buildings as well as to keep the pavement, ice-free 

directly in winter [4].  Numerous studies have been conducted on the amount of 

energy that can be extracted, the amount of energy that is needed to keep an asphalt 

road free of ice, and the effect of energy transfer on temperature distribution along 

the depth of asphalt pavements [5].  ASC provides us a better alternative method for 

snow melting because of such system generally has higher energy efficiency than 

boilers or electrical heaters.  Furthermore, by extracting heat in the summer and 

providing heat in the winter as shown in Figure 1.2. 
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Figure 1.2 Schematic diagrams of the solar collecting device and snow melting 

 

 

Asphalt solar collector (ASC) provides us a better alternative method for 

snow melting.  The higher fluid temperature is a positive way to improve the 

performance of snow melting system.  Asphalt concrete is widely used in parking 

lots, tarmacs, airport runway, bridge deck, roadways, etc.  Therefore, it is desirable 

that ice and snow be removed effectively to keep asphalt pavement free [2]. 

 

 

Asphalt solar collectors consist of pipes embedded in the pavement with a 

circulating fluid inside as shown in Figure 1.3 Solar radiation causes an increase in 

pavement temperature.  Due to the temperature gradient between the fluid circulating 

through the pipes and the pavement, a heat transfer process occurs from pavement to 

a fluid which leads to a drop in pavement temperature and an increase in fluid 

temperature.  This drop in asphalt temperature contributes to mitigate the heat island 

effect and reduce the risk of permanent deformations.  However, what makes asphalt 

solar collectors really interesting is their ability to use the temperature rise undergone 

by the circulating fluid to harness energy.  Asphalt solar collectors are usually 

coupled with low temperature geothermal heat pumps, obtaining reasonable 

efficiency and operating costs.  The energy obtained from asphalt solar collectors is 

generally used for snow-melting systems or to maintain thermal comfort of adjacent 

buildings. There are also concrete solar collectors, but because of the black color, the 

asphalt solar absorption coefficient is higher than concrete [6]. 
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Figure 1.3 Concept of harvesting energy from pavements and reducing pavement 

temperature 

 

 

The passive techniques include methods to modify the fluids‟ properties, surface 

shape, roughness or external attachment to increase the surface area, and make the flow 

laminar and turbulent.  However, conventional heat transfer fluids such as water his poor 

thermal performance due to his low thermal conductivity, therefore it should add the 

nanoparticles to change the fluid character to be nanofluid to increase the thermal 

conductivity of the these fluids. 

 

 

Nanofluids are colloidal mixtures of nanometric metallic or ceramic particles 

in a base fluid, such as water, ethylene glycol or oil.  Nanofluids possess immense 

potential to enhance the heat transfer character of the original fluid due to improved 

thermal transport properties and according to passive studies that the Non-metallic 

materials, such as alumina Al2O3, CuO, TiO2 and carbon that possess higher thermal 

conductivities than the conventional heat transfer fluids. 
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1.2 Problem Statement 

 

 

It is a major societal problem to provide a sustainable supply of energy.  To 

make good use of solar energy, researches into asphalt pavements used as solar 

collector have been conducted.  It is indicated that Asphalt Solar Collector (ASC) 

could be used for heating and cooling the adjacent buildings as well as keeping the 

pavement ice free.  To improve traffic safety in the late fall, winter, and early spring, 

during periods of snow, sleet, and freezing rain.  Preventing the snow accumulation 

and ice formation on roads, especially on some critical sections including bridges and 

ramps, is of high priority to improve winter transportation safety [2]. 

 

 

On the other hand the Asphalt pavement surface temperature can reach up to 

70 °C in summer inducing a rise in temperature of the air above, which is generally 

known as the heat island effect.  It causes an increase in power consumption due to 

the use of air conditioning and a decrease in air quality in cities.  Moreover, 

pavements under such high temperatures are prone to suffer from rutting.  In 

particular, the thermal oxidation rate doubles with each 10 K increment in 

temperature [7]. 

 

 

Moreover, the routine heat transfer fluid does not satisfy the necessity of a 

great heat transfer with high efficiency.  In this case, many investigations have been 

done to enhance the heat transfer by using water as a working fluid. However, water 

has low thermal conductivity.  So the investigators are turning to the solids with high 

thermal conductivities and methods to mix these materials with water as a base fluid.  

The composite material in nanoscale mixed with base fluid to produce medium has a 

term of "nanofluid" to enhance the heat transfer properties.  Until now no research 

reported on using nanofluid in asphalt solar collator.  This project will focus on heat 

transfer enhancement using nanofluid.  

 

 



6 

 

1.3 Application of the Study 

 

 

The sun provides a cheap and abundant source of clean and renewable 

energy.  Solar cells have been used to capture this energy and generate electricity.  A 

more useful form of “cell” could be asphalt pavements, which get heated up by solar 

radiation.  The “road” energy solar cell concept takes advantage of a massive acreage 

of installed parking lots, tarmacs, and roadways. The heat retained in the asphalt 

mixture can continue to produce energy after nightfall, when traditional solar cells do 

not function.  The idea of capturing energy from pavement not only turns areas such 

as parking lots into an energy source, but also could cool the asphalt pavements, thus 

reducing the urban heat island effect, the type of asphalt solar collector combined 

with turbine to produce electrical energy is called (Roadway power system) as shown 

in figure 1.4. 

 

 

 

 

Figure 1.4 Roadway power systems 

 

 

One of the pioneer applications on an asphalt solar collector in Switzerland 

they are called (smart bridge) as shown in figure 1.5, this system combined with 

borehole heat exchanger of ground source heat pump system. 

 



7 

 

 

 

Figure 1.5 Smart Bridge 

 

 

The main task was to investigate the application of an asphalt solar collector 

for heat capture and a ground source heat pump with borehole storage with the 

intention of using that heat for domestic hot water and air condition as shown below 

in figure 1.6. 

 

 

 

 

Figure 1.6 Air conditioning for buildings by using asphalt solar collector 

 

 

The system uses an existing lot, so does not require purchase or lease of new 

real estate (as would be needed for a solar “farm” installation). The system has no 

visible signature that is; the parking lot looks the same.  This compares well against 

rooftop silicon panels that are often bulky and unattractive.  The energy system can 
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be installed.  The captured energy from heated asphalt pavements can be used for 

relatively simple applications, such as heating of water, to sophisticated applications, 

such as snow melting in the winter, generating electricity through thermo-electric 

generators in the summer [8]. 

 

 

 

 

1.4 Objective of the Study  

 

 

The objective of the present study is 

 

 

  To improve the thermal efficiency of asphalt collector using nanofluid. 

 

  To analyze the performance of asphalt collector. 

 

 

 

 

1.5 Scope of Study  

 

 

The scope of the present study is 

 

 

 Using CuO nanofluid with volume fraction at the range from 0% to 4%. 

 

 Incompressible fluid flow. 

 

 Laminar flow. 

 

 Unsteady state flow. 

 

 Using CFD Ansys fluent 14.0. 
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1.6 Dissertation Outline 

 

 

This thesis is divided into five chapters as follows: 

 

 

Chapter 1 represents the problem statement and scope of this study. 

Applications of the study and the objectives of the project are reported. 

 

 

Chapter 2 contains the literature review which is related to the temperature 

distribution and enhances heat transfer in asphalt collector geometries involving 

experimental and numerical studies for three-dimensional geometries. The 

parameters that related to the thermal conductivity, pipe length, pipe spacing and 

inlet temperature fluid, while the last section is related to nanoparticles and 

nanofluids parameters, application, production and thermo physical properties. 

 

 

Chapter 3 focuses on the mathematical and theoretical aspects governing the 

convection heat transfer for three-dimensions in asphalt collector.  This chapter 

shows the numerical procedures for solving the present problem in details as well as 

the assumptions and limitations of boundary conditions for the computational 

domain are also mentioned.  Furthermore, the analysis and equations of nanofluids 

thermophysical properties are presented according to their diameter and volume 

fraction. 

 

 

Chapter 4 the first section presents the code validation results.  The second 

section introduces the results of the present numerical work to investigate the effects 

of nanofluid with different nanoparticle volume fractions. 

 

 

Chapter 5 summarizes the conclusions obtained from the numerical 

simulation with related suggestions for future work.  
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