ANALYSIS OF IVAT LABORATORY GROUNDING SYSTEM USING CDEGS SOFTWARE

MOHAMED ABDALLA OSMAN MOHAMED

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Electrical-Power)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > JUNE 2014

This project report is dedicated to my parents for their endless support and encouragement.

ACKNOWLEDGEMENT

First and foremost, I would like to express heartfelt gratitude to my supervisor **Assos**. **Prof. Dr. Zulkurnain Abdul-Malek** for his constant support during my study at UTM. He inspired me greatly to work in this project. His willingness to motivate me contributed tremendously to my project. I have learned a lot from him and I am fortunate to have him as my mentor and supervisor.

Besides, I would like to thank the authority of Universiti Teknologi Malaysia (UTM) for providing me with a good environment and facilities.

ABSTRACT

Practical tests on grounding systems has proved very costly and pose hazards on operating personnel. Therefore, numerical methods using computers provide the most appropriate tool to assess the earthing systems. The research has been conducted with the utilization of CDEGS software as a tool to simulate all necessary phenomena on the built CDEGS model of the grounding system in IVAT's laboratory. In particular, the ground potential rise, touch voltages, and step voltages plots are the main outputs generated. Six lightning scenarious catergorized into low, medium and hight levels are applied on the proposed grounding system to assess for the IVAT's earthing structure safety. The IEEE 80-2000 standard is used to calculate the maximum allowable limits for surface potentials and employed as set point. Obtained results were compared to the safety limit of the standard and proved safe only for the low level when no protective layer is in use. However, the system was completely safe and met the standard's limits for low, medium and high levels of lightning strikes when a protective layer is in place.

ABSTRAK

Ujian praktikal pada sistem pembumian membabitkan kos yang sangat mahal dan menimbulkan bahaya kepada penguji. Oleh itu, kaedah berangka menggunakan komputer merupakan teknik yang paling sesuai untuk menilai sistem pembumian. Kajian ini telah dijalankan dengan penggunaan perisian CDEGS sebagai alat untuk mensimulasikan semua fenomena sistem pembumian makmal IVAT. Khususnya, kenaikan potensi bumi, voltan sentuh, voltan langkah voltan plot adalah hasil utama simulasi. Enam senario kilat iaitu tahap rendah, sederhana dan tinggi digunakan pada sistem pembumian yang dicadangkan untuk menilai tahap keselamatan struktur IVAT. Standard IEEE 80-2000 digunakan untuk mengira had maksimum yang dibenarkan untuk potensi permukaan dan sebagai titik set. Keputusan yang didapati dibandingkan dengan had keselamatan yang standard dan terbukti selamat untuk hanya tahap rendah apabila tiada lapisan perlindungan digunakan. Walau bagaimanapun, sistem ini selamat dan memenuhi had standard bagi tahap rendah, sederhana dan tinggi apabila lapisan perlindungan digunakan

TABLE OF CONTENTS

CHAPTER	TITLE		PAGE	
	DECLARATION			ii
	DED	ICATIC)N	iii
	ACKNOWLEDGMENT			iv
	ABS	TRACT	ГКАСТ	
	ABS	ABSTRAK		
	ТАВ	BLE OF CONTENTS		vii
	LIST	Г ОГ ТА	BLES	xii
	LIST	r of fic	GURES	xiii
1	INTRODUCTION			1
	1.1	Backg	round	1
	1.2	Proble	em Statement	2
	1.3	Projec	t Objectives	2
	1.4	Projec	t Scope	3
2	LITERATURE REVIEW		4	
	2.1	Introduction		4
	2.2	Groun	ding Fundamentals	4
		2.2.1	Properties of the Ground	5
		2.2.2	Properties of Earthing System	8
	2.3	Groun	d Potential Rise (GPR) and Surface Potential	
		Distril	oution	8
	2.4	Chara	cteristics of different electrodes configurations	10
		2.4.1	Single vertical electrode buried in earth	10
		2.4.2	Variation of Resistance with Depth	11
		2.4.3	Variation of Resistance with Diameter	12

	2.4.4	Horizontal Electrode Buried in Earth	18	
	2.4.5	Horizontal Electrode Buried in a Straight Line	13	
	2.4.6	Horizontal Electrodes Buried in a Grid		
		Configuration	15	
2.6	Groun	d Layer Depth	17	
2.7	Geom	etrical Dimension of Grounding System	18	
2.8	Applic	cation of Horizontal or Vertical Rods	18	
МЕТ	HODO	LOGY	19	
3.1	Introduction		19	
3.2	Resear	Research Activities		
3.3	Resear	Research Tools		
3.4	Mappi	ing of Lightning Characteristics	21	
3.5	Lightn	ing Strikes Levels	22	
3.6	IEEE	Guide for Safety in AC substation Grounding		
	(Stand	lard 80-2000)	23	
3.7	IVAT	's Grounding System	24	
RES	ULTS A	ND DISCUSSION	27	
4.1	Introduction		27	
4.2	Result	Results		
	4.2.1	IVAT's Grounding System Resistance	27	
	4.2.2	30 kA Case	28	
	4.2.3	60 kA Case	32	
	4.2.4	90 kA Case	35	
	4.2.5	120 kA Case	39	
	4.2.6	160 kA Case	43	
	4.2.7	180 kA Case	46	
4.3	Discussion			

5	5 CONCLUSION AND RECOMMENDATION		
	5.1	Conclusion	54
REFERENC	CES		55

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Ground resistivity, ρ for various kinds of the soil and concrete [2]	6
3.1	Strike Level Definition	22
3.2	LIGHTNING TOUCH VOLTAGE LIMITATIONS	24
3.3	LIGHTNING STEP VOLTAGE LIMITATIONS	24
4.1	Obtained touch voltages to standard	51
4.2	Obtained step voltages to standard	52

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
2.1	Resistivity of clay as a function of soil moisture [2]	6
2.2	Soil resistivity as a function of temperature [3]	7
2.3	Ground Potential Rise (GPR)	9
2.4	Touch Voltage vs Step Voltage	10
2.5	Resistance to ground variation with depth	11
2.6	Resistance to Ground Variation with Electrode Diameter	12
2.7	Resistance to Ground Variation with Length of Horizontal	
	Electrode	14
2.8	Resistance to Ground Variation with Different Sized H	orizontal
	Electrodes	14
2.9	Resistance to Ground Variation with Depth of Horizontal	
	Electrodes	15
2.10	Resistance to Ground Variation for Different Wire Grid Area	s 16
3.1	The research methodology steps	20
3.2	Mapping of the lightning characteristics [11]	22
3.3	Reference IVAT's grounding grid as seen in top view in	
	CDEGS	25
3.4	Reference IVAT's grounding system in 3D as seen in CDEG	S
	software	25
4.1	CDEGS output report using MALZ module	28
4.2	GPR for the 30 kA lightning strike in 3D	28
4.3	GPR for the 30 kA lightning strike in spot 2D	29
4.4	GPR for the 30 kA lightning strike in 2D	29
4.5	Touch voltage for the 30 kA lightning strike in 3D	30
4.6	Touch voltage for the 30 kA lightning strike in spot 2D	30
4.7	Touch voltage for the 30 kA lightning strike in 2D	31

4.8	Step voltage for the 30 kA lightning strike in 2D	31
4.9	GPR for the 60 kA lightning strike in 3D	32
4.10	GPR for the 60 kA lightning strike in spot 2D	32
4.11	GPR for the 60 kA lightning strike in 2D	33
4.12	Touch voltage for the 60 kA lightning strike in 3D	33
4.13	Touch voltage for the 60 kA lightning strike in spot 2D	34
4.14	Touch voltage for the 60 kA lightning strike in 2D	34
4.15	Step voltage for the 60 kA lightning strike in 2D	35
4.16	GPR for the 90 kA lightning strike in 3D	36
4.17	GPR for the 90 kA lightning strike in spot 2D	36
4.18	GPR for the 90 kA lightning strike in 2D	37
4.19	Touch voltage for the 90 kA lightning strike in 3D	37
4.20	Touch voltage for the 60 kA lightning strike in 2D	38
4.21	Touch voltage for the 90 kA lightning strike in 2D	38
4.22	Step voltage for the 90 kA lightning strike in 2D	39
4.23	GPR for the 120 kA lightning strike in 3D	39
4.24	GPR for the 120 kA lightning strike in spot 2D	40
4.25	GPR for the 120 kA lightning strike in 2D	40
4.26	Touch voltage for the 120 kA lightning strike in 3D	41
4.27	Touch voltage for the 120 kA lightning strike in spot 2D	41
4.28	Touch voltage for the 120 kA lightning strike in 2D	42
4.29	Step voltage for the 120 kA lightning strike in 2D	42
4.30	GPR for the 160 kA lightning strike in 3D	43
4.31	GPR for the 160 kA lightning strike in spot 2D	43
4.32	GPR for the 160 kA lightning strike in 2D	44
4.33	Touch voltage for the 160 kA lightning strike in 3D	44
4.34	Touch voltage for the 160 kA lightning strike in spot 2D	45
4.35	Touch voltage for the 160 kA lightning strike in 2D	45
4.36	Step voltage for the 160 kA lightning strike in 2D	46
4.37	GPR for the 180 kA lightning strike in 3D	46
4.38	GPR for the 180 kA lightning strike in spot 2D	47
4.39	GPR for the 180 kA lightning strike in 2D	47
4.40	Touch voltage for the 180 kA lightning strike in 3D	48

4.41	Touch voltage for the 180 kA lightning strike in spot 2D	48
4.42	Touch voltage for the 180 kA lightning strike in 2D	49
4.43	Step voltage for the 180 kA lightning strike in 2D	49
4.44	Summary of GPR values	50
4.45	Summary of touch voltages	50
4.46	Summary of step voltages	41

REFERENCES

- Simmons J. Philip, Electrical Grounding and Bonding. Clifton Park, NY: Thomson, 2005.
- 2. ZA Malek. Lightning Protection and Grounding System Lecture notes.
- Brewer L. Myron, Practical Grounding Theory and Design. ABC of the Telephone Series, Vol 12, USA, 1987.
- Puttarach, A.; Chakpitak, N.; Kasirawat, T.; Pongsriwat, C., "Ground Layer Depth and the Effect of GPR," *Power Engineering Society Conference and Exposition in Africa, 2007. PowerAfrica '07. IEEE*, vol., no., pp.1,5, 16-20 July 2007.
- Weiming Zhou; Zhichao Ren; Guangning Wu; Xiaobin Cao, "Research and Analyzes of Effects of Earthing Module to Grounding Resistance," High Voltage Engineering and Application, 2008. ICHVE 2008. International Conference on , vol., no., pp.194,196, 9-12 Nov. 2008.
- Puttarach, A.; Chakpitak, N.; Kasirawat, T.; Pongsriwat, C., "Substation Grounding Grid Analysis with the Variation of Soil layer depth Method," Power Tech, 2007 IEEE Lausanne, vol., no., pp.1881,1886, 1-5 July 2007.
- Elmghairbi, A.; Ahmeda, M.; Harid, N.; Griffiths, H.; Haddad, A., "A technique to increase the effective length of horizontal earth electrodes and its application to a practical earth electrode system," Lightning (APL), 2011 7th

Asia-Pacific International Conference on, vol., no., pp.690,693, 1-4 Nov. 2011.

- Ladanyi, J., "Analyses of the Earthing Resistance of HV/MV Transformer Stations with Different Earth Electrode Arrangements and Soil Structures," Electromagnetic Compatibility and Electromagnetic Ecology, 2007 7th International Symposium on , vol., no., pp.36,39, 26-29 June 2007.
- Chenghuan Tian; Yi Zhang; Li Cai; Jianguo Wang; Songbo Huang; Yan Wang, "Lightning transient characteristics of a 500-kV substation grounding grid," Lightning (APL), 2011 7th Asia-Pacific International Conference on, vol., no., pp.711,715, 1-4 Nov. 2011.
- Nassereddine, M.; Rizk, J.; Hellany, A., "How to design an effective earthing system to ensure the safety of the people," Advances in Computational Tools for Engineering Applications, 2009. ACTEA '09. International Conference on , vol., no., pp.416,421, 15-17 July 2009.
- M.K. Hassan, R.Z. Abdul Rahman, A.C. Soh, M.Z.A. Ab Kadir, "Lightning strike mapping for Peninsular Malaysia using artificial intelligence techniques" Journal of Theoretical and Applied Information Technology 31st December 2011. Vol. 34 No.2.
- Ma, J.; Dawalibi, F.P.; Southey, R.D., "Effects of the changes in IEEE std. 80 on the design and analysis of power system grounding," Power System Technology, 2002. Proceedings. PowerCon 2002. International Conference on , vol.2, no., pp.974,979 vol.2, 2002.
- Phayomhom, A.; Sirisumrannukul, S.; Kasirawat, T.; Puttarach, A., "Safety design planning of ground grid for outdoor substations in MEA's power distribution system," Electrical Engineering/Electronics Computer

Telecommunications and Information Technology (ECTI-CON), 2010 International Conference on , vol., no., pp.298,302, 19-21 May 2010.

- Novak, T.; Fisher, Thomas J., "Lightning propagation through the Earth and its potential for methane ignitions in abandoned areas of underground coal mines," Industry Applications, IEEE Transactions on , vol.37, no.6, pp.1555,1562, Nov/Dec 2001.
- Stet, D., et al. "Stream gas pipeline in proximity of high voltage power lines. Part I—Soil resistivity evaluation." Universities Power Engineering Conference (UPEC), 2012 47th International. IEEE, 2012.
- Czumbil, Levente, et al. "Stream gas pipeline in proximity of high voltage power lines. Part II—Induced voltage evaluation." Universities Power Engineering Conference (UPEC), 2012 47th International. IEEE, 2012.
- Varju, G., and J. Ladanyi. "Transient power frequency overvoltages transferred to low voltage networks from the EPR of HV and MV transformer stations."Electromagnetic Compatibility and Electromagnetic Ecology, 2007 7th International Symposium on. IEEE, 2007.
- Mahtar, F., et al. "Comparison study of usage as grounding electrode between galvanized iron and copper with and without earth additive filler." Applied Electromagnetics, 2007. APACE 2007. Asia-Pacific Conference on. IEEE, 2007.
- Zhao, H., et al. "Safety-limit curves for earthing system designs: appraisal of standard recommendations." IEE Proceedings-Generation, Transmission and Distribution 152.6 (2005): 871-879.

 Li, Lin, et al. "Influence of soil and conductor of ground grid on safety of the grounding system." Electromagnetic Compatibility, 2000. IEEE International Symposium on. Vol. 2. IEEE, 2000.