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ABSTRACT 

 Recently, applications of Ti-13Nb-13Zr alloy have been widely increased in 

biomedical fields due to its excellent biocompatibility and mechanical properties.  

However, its corrosion resistance is still a matter of concern when it is implanted 

inside human body.  Many attempts have been done to enhance its corrosion 

resistance by using hydroxyapatite coating.  This study includes two major 

directions; firstly calcium phosphate was electrophoretically coated on Ti-13Nb-13Zr 

surface in order to improve its corrosion resistance.  Sintering post treatment was 

then conducted to the coated samples in order to transform the deposited layer from 

dicalcium phosphate dehydrated (DCPD) phase to the hydroxyapatite crystalline 

(HA) phase.  The effect of two different sintering post-treatment parameters 

including time and temperature have been experienced on the corrosion potential of 

calcium phosphate coated substrate.  Full factorial experimental designs followed by 

Response Surface Methodology (RSM) were employed for planning and analyzing 

the experimental results.  Time and temperature of sintering post-treatment were 

considered as independent variables while corrosion potential is accounted as a 

response variable.  Empirical models were successfully developed to predict amount 

of corrosion potential by using design of experiment (DOE) software.  Experimental 

results show that the effect of sintering temperature is more significant than the 

sintering time.  Moreover the results indicate that high corrosion potential is obtained 

under sintering conditions at (Time = 90 minutes, Temperature = 700° C).  Finally, 

the electrophoretic deposition method exhibits a relatively uniform HA coating layer 

and free of crack. 
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ABSTRAK 

Kebelakangan ini, aplikasi aloi Ti-13Nb-13Zr telah meningkat secara meluas 

dalam bidang bioperubatan kerana keserasian-bio dan sifat-sifat mekaniknya yang 

sangat baik.  Walau bagaimanapun, ketahanan kakisannya  masih menjadi perhatian 

apabila ia diimplankan ke dalam badan manusia.  Banyak usaha telah dilakukan 

untuk meningkatkan rintangan kakisan dengan menggunakan salutan hydroksiapatit.  

Kajian ini merangkumi dua halatuju utama; pertama kalsium fosfat di salutkan ke 

atas permukaan Ti-13Nb-13Zr secara elektroforesis  bagi meningkatkan ketahanan 

kakisannya.  Pasca rawatan pensinteran telah dijalankan kepada sampel bersalut 

untuk mengubah lapisan daripada fasa dikalsium fosfat dehidrasi (DCPD) kepada 

fasa kristal hydroksiapatit (HA).  Kesan dua parameter selepas rawatan pensinteran 

yang berbeza termasuk masa dan suhu telah di kaji berdasarkan kepada keupayaan 

kakisan ke atas substrat kalsium fosfat bersalut.  Rekabentuk ujikaji faktoran penuh 

diikuti oleh Kaedah Respon Permukaan (RSM) telah digunakan untuk merancang 

dan menganalisis keputusan ujikaji.  Masa dan suhu pensinteran selepas rawatan 

dianggap sebagai pembolehubah bebas manakala potensi hakisan diambil kira 

sebagai pembolehubah respon.  Model empirikal telah berjaya dibangunkan untuk 

meramalkan jumlah potensi kakisan dengan menggunakan perisian reka bentuk 

ujikaji (DOE).  Keputusan ujikaji menunjukkan kesan suhu pensinteran adalah faktor 

yang lebih signifikan berbanding masa pensinteran.  Selain itu, keputusan 

menunjukkan bahawa potensi kakisan yang tinggi diperolehi dalam keadaan 

pensinteran pada (Masa = 90 minit, Suhu = 700 °C).  Akhir sekali, kaedah 

pemendapan elektroforetik menunjukkan bahawa lapisan salutan HA yang 

disebabkan oleh pensinteran selepas rawatan adalah agak seragam dan bebas 

daripada retakan. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background of the Study 

Biomaterials have a long history as orthopaedic implants and bone graft 

substitutes due to their well-known strength (elastic modulus larger than 100 GPa), 

particularly in load-bearing areas.  The advantages of biomaterials include excellent 

mechanical properties such as fatigue, reasonable corrosion resistance, 

biocompatibility, suitable density, high strength and biocompatibility.  The heat 

treatment and manufacturing method also affect these properties.  Their use is 

however associated with several limitations, which comprise permanence, cracking, 

low volumetric porosity, relatively high modulus of elasticity, low osseointegration 

with bone tissues and the potential of releasing metallic ions which in turn resulting 

in a corrosion within the body.  Most metals have ability to produce a complete 

tissue replacement for bone defects due to their biodegradable properties. 

 

Corrosion is a great concern for use of metallic implant when it exposed in 

hostile electrolytic environments because the corrosion products have been 

implicated in causing infections, local pain, swelling, and loosening.  It can, 

therefore, severely limit the fatigue life and ultimate strength of the material, leading 

to the in vivo failure of implants [42].  The human body shows natural reaction 

against prosthetic devices causing the osteolysis and has the tendency to isolate from 

the surrounding live tissues.  
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In order to improve corrosion resistance, biodegradation and bioactive 

properties, bio-ceramic coatings on metallic substrates have been widely used in 

bone substitutes because of their biocompatibility, bioactivity, and osteoconductivity.  

Surface engineering processes can be used increasingly either to modify existing 

surfaces or to apply coatings.  Coating can be applied for a diversity of reasons.  As 

the corrosion of metal surface is an electrochemical reaction between the metal and 

external agents (for example, oxygen and/or water).  Coating can act as a barrier and 

preventing this reaction. 

 

Hydroxyapatite (HA), Ca10(PO4)6(OH)2, is composed primarily of calcium 

and phosphorous with hydroxide ions that are eliminated at elevated temperatures.  

HA and other related calcium phosphate minerals have been utilised extensively as 

implant materials for many years due to its excellent biocompatibility and bone 

bonding ability and also due to its structural and compositional similarity to that of 

the mineral phase of hard tissue in human bones [43].  HA coatings have good 

potential as they can exploit the biocompatible and bone bonding properties of the 

ceramic, while utilising the mechanical properties of substrates such as Co-Cr alloys, 

Ti based alloy and other biocompatible alloys.  While the metallic materials have the 

required mechanical properties, they benefit from the HA which provides an 

osteoconductive surface for new bone growth, anchoring the implant and transferring 

load to the skeleton, helping to combat bone atrophy have been extensively used for 

the purpose of bone graft substitute and bone tissue engineering.  Because of their 

similarity to bone mineral, calcium phosphorous (Ca/P) based materials are 

biocompatible, osteoconductive and bone-bonding. 

 

In orthopaedic field, hydroxyapatite (HA, Ca10(PO4)6(OH)2) coated metal 

implants have been studied extensively due to their outstanding biological responses 

in the physiological environment and surface protection against body fluid [44]. 

Several coating methods have been introduced for coating of HAp on the metallic 

substrates: plasma spraying, sol–gel, RF magnetron sputter, ion beam dynamic 

mixing, pulse laser deposition, biomimetic coating, electrophoretic deposition, and 

electrolytic deposition.  Among the various fabrication methods, electrophoretic 

deposition (EPD) is a promising technique, with advantages including short 
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formation time, simplicity in instrumentation, and capability of coating complex-

shaped implants.  Electrophoretic deposition is a colloidal processing technique that 

allows not only shaping free standing objects but also allows depositing thin films 

and coatings on substrates.  EPD is known to be one of the most effective and 

efficient techniques to assemble fine particles.  This technique has received 

significant attention due to its simplicity in setup, low equipment cost, and capability 

to form complex shapes and patterns.  EPD is also a potentially attractive process for 

obtaining bioceramic.  The application of EPD in the biomaterials area, in particular 

for obtaining HAp and bioactive glass coatings on metallic implants, has been 

demonstrated [45]. 

 

Electrophoretic deposition (EPD) was used in the current work as the coating 

technique due to its efficiency, flexibility, and economy.  In general, a short 

deposition time is required for electrophoretic forming or coating (a few seconds to a 

few minutes).  The deposition rate of electrophoresis can be as high as 1 mm/min. 

Uniform coatings of complex shapes can be easily formed by using appropriately 

shaped electrodes, such as wire, coil or plate.  A high degree of control of coating 

deposit morphology can be obtained by adjusting the deposition conditions, the 

ceramic powder size and shape.  However with increasing deposition time and 

voltage, the thickness of the coating increases. 

 

Evaluation the electrochemical corrosion behaviour of HA coating layer on 

the Ti-13Nb-13Zr substrate is one of the goals of this project.  It is expected the 

coating of HA layer to improve the corrosion resistance by this project‟s method. 

1.2 Problem Statement  

Nowadays corrosion of the biomaterials becomes a significant issues the 

corrosion behaviour of various implants and the role of the surface oxide film and the 

corrosion products on the failure of implants are discussed.  Nonetheless, these 

problems would be solved by coating implants with biocompatible and corrosion 

resistant material like Hydroxyapatite (HA). Electrochemical deposition of HA 
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following by sintering post-treatment on metallic implant has unique advantages due 

to its capability of forming uniform coating and simple setup.  But there is still lack 

of research and study on controlling of post-treatment parameters including time and 

temperature after EPD coating on Ti-13Nb-13Zr substrate. 

1.3  Objectives of the Study 

Based on the problem statement of the project, the objectives of this research 

were: 

 

i. To evaluate the effect of post-treatment parameters (sintering time and 

temperature) on corrosion resistance of HA coated Ti-13Nb-13Zr alloy. 

ii. To determine the optimal setting of post treatment parameters for better 

corrosion resistance of (Ti-13Nb-13Zr) substrate. 

1.4 Scopes of the Study 

The scopes of this project were: 

 

i. The implant material used in this study was limited to one of the metallic 

implant material which is Ti-13Nb-13Zr alloy. 

ii. Coating performances were evaluated in terms of corrosion resistance and 

micro-crack formed after sintering post-treatment. 

iii. Electrophoretic deposition technique (EPD) was employed for coating of HA 

on Ti-13Nb-13Zr alloy. 

iv. Design Expert 7 software (DOE) was used to analyse the experimental 

results. 

v. Two different sintering parameters including time and temperature were used 

to evaluate their effects on the corrosion resistance of HA coated layer. 
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