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ABSTRACT 

 

 

 

 

 Compact and high efficiency recuperator with thin foil corrugated air cell as 

the primary surface is employed in clean and efficient microturbine system (100 

kW).  Current primary surface recuperators are made of AISI 347 austenitic stainless 

steel foils that operate at gas inlet temperature of less than 650 °C and attain 

approximately 30 percent of efficiency.  Efficiency of greater than 40 percent is 

possible with the increase in turbine inlet temperature to 1230 °C, and as a result 

recuperator inlet temperature increase to 843 °C.  This study establishes base line 

creep rupture behaviour of AISI 347 austenitic stainless steel foils at operating 

temperature of 700 °C and applied stresses of 150,182 and 221 MPa in air as 

oxidation environment, and in inert gas (Argon gas) as non-oxidation environment.  

Creep behaviour of the foil shows that the primary creep stage is short and creep life 

of the foil is dominated by secondary and tertiary creep deformation.  The time to 

rupture for the foil specimen is 78 hours with the corresponding rupture strain of 

18.42 percent in air and 102 hours with the corresponding rupture strain of 15 

percent in Argon gas for the applied stresses of 150,182 and 221 MPa at 700 °C. 

Creep curves for AISI 347 austenitic stainless steel foil at 700 °C and at 150,182 and 

221 MPa are well  represented by the modified Theta-Projection concept model with 

hardening and softening terms.  The creep coefficients, θ1 and θ3, and the exponent 

α are 0.0355, 0.04645 and 1.39 respectively in air and 0.0035, 0.048 and 1.3 

respectively in Ar gas environment.  Theta-Projection parameter values of the creep 

curves at temperature of 700 °C and applied stress of range 150,182 and 221 MPa 

shows a sudden gradient change at applied stress of 150 MPa possibly due to 

different mechanism of dislocation movements and microstructure changes. the creep 

curves for AISI 347 austenitic stainless steel foil at 700 °C and at 150,182 and 221 

MPa in inert gas are represented by the power-law model and parameters of this 

model A, n and Q are 7.947(1010) , 1.73 and 556.4KJ/mol., respectively.  Two 

different creep failure mechanisms for austenitic stainless steel foils are possible 

since the creep failure data falls very close to the boundary of dislocation and 

diffusion creep regions in the creep mechanism map for bulk material.morphology of 

fractured foil surface revealed intergranular fracture with shallow network of faceted 

voids. The formation of creep cavities is significant. Post test phase analysis 

indicates the formation of carbides, namely Cr23C6, NbC and Fe3Nb3 C.  
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ABSTRAK 

 

 

 

 

Pemulih padat serta berkecekapan tinggi dengan kerajang tipis sel udara 

beralun sebagai permukaan utama digunakan dalam sistem mikroturbin bersih dan 

cekap (100 kW).  Pemulih permukaan utama semasa diperbuat daripada AISI 347 

kerajang austenit keluli tahan karat yang beroperasi pada suhu gas masuk kurang 

daripada 650 °C serta mencapai kira-kira 30 peratus kecekapan.  Kecekapan yang 

lebih besar daripada 40 peratus adalah mungkin dengan peningkatan suhu masuk 

turbin hingga 1230 °C, dan hasilnya suhu masuk pemulih  meningkat hingga 843 °C.  

Kajian ini menetapkan garis asas kelakuan rayapan pecah AISI 347 austenit kerajang 

keluli tahan karat pada suhu operasi pada 700 °C dan tekanan yang digunakan adalah 

150.182 dan 221 MPa dalam udara persekitaran pengoksidaan dan dalam gas lengai 

(gas Argon) sebagai persekitaran bukan-pengoksidaan.  Kelakuan rayapan kerajang 

menunjukkan bahawa peringkat rayapan utama adalah pendek dan jangka hayat 

rayapan kerajang dikuasai oleh pengubahbentuk rayapan sekunder dan tertier.  Masa 

untuk pecah bagi spesimen kerajang adalah 78 jam dengan ketegangan kepecahan 

yang sepadan sebanyak 18.42 peratus di udara dan 102 jam dengan ketegangan 

kepecahan yang sepadan sebanyak 15 peratus dalam gas Argon.  Lengkung rayapan 

bagi kerajang austenit keluli tahan karat AISI 347 pada 700 °C, 150,182 dan 221 

MPa diwakili dengan menggunakan model konsep Unjuran Theta  yang diubah suai 

daripada segi pengerasan dan pelembutan.  Pekali rayapan, θ1 dan θ3, dan α 

eksponen adalah 0,0355, 0,04645 dan 1.39 masing-masing di udara dan 0,0035, 

0,048 dan 1.3 masing-masing dalam gas lengai.  Nilai parameter-parameter Unjuran 

Theta rayapan eksperimen pada suhu 700 °C dan tekanan digunakan daripada julat 

150,182 dan 221 MPa menunjukkan perubahan secara tiba-tiba pada kecerunan 

tekanan gunaan pada 150 MPa mungkin disebabkan oleh mekanisma yang berbeza 

daripada pergerakan kehelan dan perubahan-perubahan mikrostruktur dan juga 

lengkuk rayapan bagi kerajang austenit keluli tahan karat AISI 347 pada 700 °C, 

150,182 dan 221 MPa dalam gas lengai diwakili oleh model kuasa-hukum dan 

parameter-parameter model ini adalah A, n dan Q iaitu masing-masing〖7,947 * 10

〗 ^ 10, 1.73 dan 556.4KJ/mol.  Dua mekanisme kegagalan rayapan yang berbeza  

bagi austenit kerajang keluli tahan karat adalah mungkin kerana data kegagalan 

rayapan berada sangat dekat dengan sempadan kehelan dan kawasan resapan rayapan 

dalam peta mekanisme rayapan untuk bahan pukal. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

 Distributed Generation (DG) is expected to play an important role in the 

electric power system in the near future.  The insertion of DG systems into existing 

electric systems has a great impact on real-time system operation and planning.  It is 

widely accepted that Microturbine Generation (MTG) systems are currently 

attracting much attention for meeting customers' needs in the distributed-

powergeneration market.  The challenges facing the power industries companies are 

to provide clean, efficient, affordable and reliable heat and power supplies.  

Microturbines with their compact size, modularity and potential for relatively low 

cost, efficient and clean operations are emerging as a leading candidate meeting these 

needs. 

 

 

Microturbines are suitable for distributed generation applications due to their 

flexibility in connection methods, ability to be stacked in parallel to serve larger 

loads, ability to provide stable and reliable power, and low emissions.  Microturbines 

run at high speed and can be used either in power-only generation or in combined 

heat and power (CHP) systems.  The size range for microturbines currently available 
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and in development is from 30 to 250 kilowatts (kW), while conventional gas turbine 

sizes range from 500 kW to 250 megawatts (MW) [1]. 

 

 

 Single-shaft microturbine based generation system [2, 6] Figure 1.1 shows 

the basic components of a microturbine generation system consist of a compressor, 

turbine, recuperator, high speed generator and power electronics interface.  

Microturbines, like large gas turbines, operate based on the thermodynamic cycle 

known as the Brayton cycle [2].  In this cycle, a) the inlet air is compressed in a 

radial (or centrifugal) compressor, b) fuel is mixed with the compressed air in the 

combustor and burned, and c) the hot combustion gas is then expanded in the turbine 

section producing rotating mechanical power to drive the compressor and the electric 

generator, mounted on the same shaft.  

 

 

 

 

Figure 1.1 Microturbine based CHP System [5] 

 

 Recuperator 
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In a typical microturbine, an air- to- gas heat exchanger (called a recuperator) 

is added to increase the overall efficiency.  The recuperator uses the heat energy 

available in the turbine’s hot exhaust gas to preheat the compressed air before the 

compressed air goes into the combustion chamber, thereby reducing the fuel needed 

during the combustion process. 

 

 

 

 

Figure 1.2 Microturbine Generation (MTG) Components [8] 

 

 

 Clean and efficient microturbine system (100 KW) employs compact, high 

efficiency heat-exchanger or recuperator with thin-foil folded air cell as the primary 

surface [7].  Figure 1.3 illustrates the corrugated air cell construction in a typical 

recuperator. The corrugated pattern of the cell maximizes the primary surface area 

that is in direct contact with turbine exhaust gas on one side and compressor 

discharge air on the other.  
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Figure 1.3 Schematic of corrugated air-cell in thin foils primary surface 

recuperator [7] 

 

 

Combined heat and power system efficiency of a microturbine is a function 

of the exhaust heat temperature.  Recuperator effectiveness strongly influenced by 

the microturbine exhaust temperature.  Effectiveness in heat exchanger industry is 

for ratio of the actual heat transferred to the maximum achievable.  Most 

microturbines include built in recuperator.  The inclusion of a high effectiveness (90 

percent) recuperator essentially doubles the efficiency of a microturbine with a 

pressure ratio of 3.2, from about 14 percent to about 29 percent depending on 

component details [1].  With the addition of the recuperator, a microturbine can be 

suitable for intermediate duty or price-sensitive base load service. 

 

 

The efficiency of heat exchanger or recuperator depends on arranging and 

profile since the efficiency increase with increase surface area that clear in figure 1.4.  
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Figure 1.4 Efficiency as a Function of profile [4] 

 

 

Current primary surface recuperators are made of AISI 347 stainless steel 

foils that operate at gas inlet temperatures of less than 650 °C and attain about 30 

percent efficiency [8].  Efficiency target of greater than 40 percent is possible for low 

compression ratios such as 5, with the increase in turbine inlet temperature to 1230 

°C, and consequently recuperator inlet to 843 °C.  At this elevated temperature level, 

the steel foils are susceptible to creep failure due to the fine grain size, accelerated 

oxidation due to moisture in the hot exhaust gas and loss of ductility due to the 

thermal aging.  Severe creep deformation able to restrict gas flow, increase 

recuperator back-pressure and decrease overall efficiency. 
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Recuperator Effectiveness (percent) 

 

Figure 1.5 Microturbine Efficiency as a Function of Recuperator Effectiveness 

 

 

Creep deformation is mutually accommodated by a combination of elastic 

deformation, localized plastic deformation, non-uniform creep, grain boundary 

sliding and diffusion flow through the grains, along grain and free surfaces [8].  The 

second phase particles are also responsible for cavity production which leads to 

intergranular failures [9].  The most important and major step in developing 

recuperators with upgraded performance is to characterize the current technology. 

combination of oxidation and corrosion behaviour, and tensile and creep strengths 

determine the upper temperature and useful lifetime limits.  In this respect, creep 

tests on commercial AISI Type 347 steel recuperator stock has been conducted [6]. 

Aging effects on the steel up to 30,000 hours above 700 °C has been established in 

terms of detrimental sigma phase formation [7]. 

 

 

 Properties and behavior of AISI 347 steel is generally known for processing 

and fabrication into high-temperature components such as heat-exchanger piping and 

gas turbine parts.  However, information on these alloys fabricated into thin foils (0.1 

– 0.25 mm-thick) for use in primary surface recuperators is limited or nonexistent.  
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Austenitic stainless steels are among the most widely used alloys for components 

operating in high temperature environment, in heat exchanger or recuperator and 

nuclear reactors. It is characterized by a minimum of 10.5 wt % Cr in order to form a 

passive Cr2O3 layer which protects the metal from further corrosion.  Austenitic 

stainless steels also have additions of Ni to stabilize the austenite phase with a face 

centered cubic (FCC) crystal structure. 

 

 

The combination of high temperature air and significant water vapor is 

common in energy generation devices such as, for example, gas turbines, steam 

turbines, and fuel cells, and in heat exchangers and recuperators handling the gas 

streams used or generated by such energy generation devices, as well as in 

equipment for treating, processing, or extracting chemicals or minerals at high 

temperatures.  Accordingly, parts of such devices subjected to these conditions have 

been fabricated from a variety of austenitic stainless steels. 

 

 

 

 

1.2 Research Objectives 

 

 

 The main objective of this study is to establish baseline creep characteristic 

and deformation mechanisms of AISI 347 austenitic stainless steel foils in air and in 

inert gas (Argon gas) at elevated stress (150,182 and 221 MPa) and 700ᵒC through 

the following tasks: 

 

a) To establish tensile stress-strain diagram of the foil at room temperature. 

b) To establish creep curve of foil at 700ᵒC and (150,182 and 221 MPa). 

c) To determine creep model for the foil based on Theta projection concept and 

power-law model. 

d) To identify creep mechanism of the foil. 
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1.3 Scope of Study 

 

 

The study covers for AISI 347 austenitic stainless steel foils with thickness of 

0.25 mm.  Microstructure and chemical composition analysis are performed on the 

as-received foil.  Tension tests of the foil are conducted at room temperature.  Creep 

tests are performed in laboratory air environment at isothermal temperature of 700 

°C and non-oxidation environment (inert gas) at isothermal temperature of 700 °C. 

The applied stress are (150,182 and 221) MPa.  Fractographic study is carried out on 

the fractured foil specimen.  Theta projection concept model and power law creep  

model  are executed for describing the long-term creep deformation behaviour of the 

foils. 

 

 

 

 

1.4 Results  

 

 

(Creep curves and models) set the baseline creep response of austenitic 

stainless steel foils at elevated temperatures and stresses can be used to advance the 

alloy for higher temperature applied with new composition metallurgy. 

 

 

High efficiency heat exchangers are being developed for new distributed 

power technology systems particularly microturbines system.  Recuperator is the part 

of microturbines that is responsible for a significant fraction of overall efficiency.  

Recuperators often require thin-section of austenitic stainless steels operating at 

elevated temperature ranges up to 800 °C.  Most of the recuperators used austenitic 

stainless steel of Type 347 because of its oxidation resistance properties and 

competitive cost.  At high temperatures which above 650 °C with the presence of 

moisture environment of the turbine exhaust gas, the material is susceptible to creep 

and oxidation.  These will cause fouling and structural deterioration and leaks, 

rapidly reducing the effectiveness and life of the recuperator.  Therefore the study is 
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to establish creep characteristics and deformation mechanisms of AISI Type 347 

austenitic stainless steel foils at 700 °C and (150,182 and 221) MPa in air and inert 

gas. 
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