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ABSTRACT 

This research addresses the design of modular setup of micropump wherein 

the two basic components of micropump: actuation and flow rectification element are 

separated. Conventional approach with integrated actuator within the micropump 

shows less flexibility and discourages disposable usage. Furthermore, fabrication 

methods of these components need to be compromised to achieve pumping target. 

Hence, this research investigates and studies the flow behaviour of the modular 

micropump with a diffuser and a gourd-shape channel design in the flow rectification 

module. Numerical simulations were built in COMSOL Multiphysics to study and 

optimise parameters in module design. Based on the obtained parameters from the 

simulation results, the diffuser module was fabricated on poly (methylmethacrylate) 

(PMMA) polymer using a rapid hot embossing replication method, whereas the 

gourd-shape module was fabricated on poly (dimethylsiloxane) (PDMS) polymer 

with a photolithography and a replication moulding (REM) technique. The actuating 

gaps between the actuation module and the flow rectification module were studied. 

The diffuser module (100 µm membrane thickness) exhibited largest flow rate range 

of 0.06–5.78 mL/min with back pressure 1.35 kPa at 2.5 mm gap. The flow rate 

performance increased 16.43% with a thinner membrane, 70 µm. For multifunctional 

application, the gourd-shape chamber module poses bi-directional pumping and 

mixing characteristic. Experimental result shows the micropump with the flow rate 

range of 0.20–1.52 mL/min (forward direction) and 0.05–1.48 mL/min (reverse 

direction).  The attributes of the mixing when using this module was further 

investigated in a forward flow configuration. The mixing performance was quantified 

by digitally counting each gray level of the captured image. Exclusively, the 

experimental findings of the proposed modular micropump indicate that the modular 

architecture is well adapted in micropump development with the advantageous of 

large flow rate range, flexible with multi-functionality and disposable features.
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ABSTRAK 

Kajian ini bertujuan untuk mereka bentuk modular mikropam di mana dua 

komponen asas mikropam: aktuator dan elemen penggarahan aliran dipisahkan. 

Kaedah konvensional integrasi aktuator di dalam mikropam mempunyai kelemahan 

daripada segi kekurangan kelenturan dan tidak boleh dibuang selepas digunakan. 

Tambahan pula, kaedah fabrikasi di antara dua komponen tersebut harus 

dikompromikan  untuk mencapai tujuan mengepam. Justeru, penyelidikan ini 

mengkaji aliran mikropam dengan penggunaan peresap dan saluran yang berbentuk 

labu dalam modul penggarahan aliran dua hala. Simulasi telah dibina dengan 

menggunakan perisian COMSOL Multiphysics untuk mencari parameter yang 

optimum dalam proses mereka bentuk elemen peresap. Berdasarkan parameter-

parameter yang diperolehi melalui keputusan simulasi, peranti tersebut direka dan 

difabrikasi daripada bahan poly (methylmethacrylate) (PMMA) dengan kaedah 

replikasi. Di samping itu, saluran berbentuk labu difabrikasikan dalam bahan 

poly (dimethylsiloxane) (PDMS) dengan penggunaan teknik fotolitografi dan teknik 

acuan replikasi. Sela pemisahan antara modul aktuator dan penggarahan telah dikaji. 

Modul peresap dengan membran (ketebalan 100 µm) menghasilkan kadar aliran 

dalam lingkungan julat yang besar di mana 0.06–5.78 mL/min pada tekanan balik 

1.35 kPa dengan jurang pemisahan 2.5 mm. Pretasi aliran telah ditingkatkan 

sebanyak 16.43% dengan membran yang lebih nipis iaitu 70 µm. Untuk aplikasi lain, 

saluran berbentuk labu menunjukkan dua arah aliran dengan kadar 0.20–

1.52 mL/min (aliran ke hadapan) and 0.05–1.48 mL/min (aliran terbalik). Selain itu, 

ciri-ciri campuran antara dua aliran turut disiasat. Pretasi campuran tersebut dikaji 

dengan membandingkan skala kelabu bagi setiap piksel dalam imej gambar yang 

ditangkap. Experimentasi mikropam telah menunjukkan seni bina modular adalah 

sesuai untuk diimplementasikan dalam modular mikropam dengan kelebihan julat 

kadar aliran yang besar, lentur dengan kepelbagaian fungsi dan mempunyai ciri-ciri 

pakai buang. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

The Micro Total Analysis System (µTAS), commonly known as Lab-On-a-

Chip (LOC) has emerged as a distinct subject with the potential to replace 

conventional laboratory procedures which are time-consuming and require repetitive 

fluid handling operations. LOC is considered as an integrated microfluidic platform 

which manipulates fluids on a microscale to incorporate the disciplines of chemical 

synthesis and biological analysis, ranging from sample preparation to electrical 

signal detection. The implementation of a LOC in these disciplines aims to reduce 

the sample volume, to have greater control of the assay with less manual 

intervention, allowing high throughput analysis, to shorten analysis time, and finally 

to reduce the cost of conventional analysis processes [1]. 

 

The basic procedure of a LOC comprises sample delivery, preparation before 

analysis, handling operations and lastly, signal acquisition and measurement. The 

operation of a LOC is presented as a functional block diagram in Figure 1.1. 
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Figure 1.1 Basic operation of LOC (version adapted from Shen et al. [2]) 

 

From Figure 1.1, the sample transportation subsystem is central to the 

concept of a LOC to dispense and deliver a micro or nano amount of a material 

sample to other subsystems for subsequent operation. The physical properties of the 

sample in the microchannel, such as flow pattern, convection, flow rate and back 

pressure, will contribute to different levels of chemical reactions that will directly 

affect the result. 

 

Conventional sample transportation is often established through manual 

pipetting, external regulated pressure source or by syringe pumps. This has limited 

the purpose of portability of LOC. Besides, the precision delivery of sample reagent 

in “micro” amount is difficult. The limited usage of “on chip pumping” mechanism 

might probably results from the lack of micropump availability with the combination 

of efficiency and cost [3]. Hence, for a LOC system to capitalize on the 

aforementioned advantageous, the development of on chip micropump is imperative 

to provide a better microscale fluid handling methods for microfluidic device. 

 

The first development of a miniature pump can be traced back to 1975, when 

patented by Thomas et al. [4] for human body implantation applications. The device, 

actuated by a two opposing piezoelectric disc bender, is incorporated with a sequence 

control by an active solenoid valve to dispense small volumes of fluid. Subsequently, 

with the continued development of microfabrication technology, in 1990 Smits et al. 
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[5] demonstrated a peristaltic micropump with a silicon micromachining technique. 

Three piezoelectric operated active valves were used to control the insulin delivery.  

  

For a single actuator operated micropump, van Lintel et al. [6] successfully 

demonstrated the feasibility of a passive silicon check valve integrated into a silicon 

based micropump to direct the flow. Since then, microfluidic systems with an 

integrated micropump have attracted much research attention. With this continued 

development, micropumps not only have a significant presence in academia, but have 

also begun to appear as commercial devices in biomedical applications.  

 

A more practical instance can be related to the portable insulin delivery 

micropump (Omnipod
TM

) developed by Insulet Corporation [7]. The insulin is filled 

into a syringe which is placed in the micropump and injected into human skin via a 

shape memory alloy (SMA) actuated linear motor. The portability and better insulin 

control benefit the diabetic patients compared with the conventional insulin injection 

system. Besides, a nebuliser which includes an ultrasonic working micropump is 

manufactured by Nektar [8]. The device is able to deliver an aerosolized antibiotic 

deep in the lungs of patients who require inhalation therapies. Further uses of 

micropumps in drug delivery and microneedle technologies are having a major 

influence in the biomedical field, where their impact will be as catalysts in 

miniaturised biomedical applications. Several excellent studies [1, 9, 10] have 

encapsulated the latest trend of micropump implementation as a biomedical device. 

In addition, the rapid growth of micropump devices has made their application as 

diverse as microelectronic cooling systems [11, 12] and the fuel cell industry [13]. 

1.2 Problem Statement  

In view of the importance of the sample dispensing procedure in a self-

contained LOC control system, a micropump with more flexibility and versatility is 

much needed. Most of the applications of the current micropumps have been limited 

to a single purpose device due to the monolithic approach to structure construction, 

where the actuator and microchannel are integrated into a single chip. This approach 
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needs a common fabrication method for both actuator and microchannel, and their 

functionality might have to be compromised to achieve the pumping target. 

Additionally, slight modification to the particular functional component may require 

reconstruction of the whole device, which might incur a substantial cost and requires 

a longer development time [14].  

 

In addition, the monolithic micropump structure is not well suited to the 

intention of being disposable. In a LOC design, disposability is a major aspect that 

should be highlighted to confirm that the sample is unpolluted. This feature is 

especially important when the LOC is meant for biomedical analysis applications. 

The device needs to be disposed of to eliminate the sterilizing procedure and to 

confirm the hygiene condition of the instrument. Nonetheless, this disposable feature 

is often constrained by the material used in their construction and the availability of 

fabrication facilities. For instance, the piezoelectric actuator involves expensive 

fabrication materials, a complicated fabrication procedure and high operating 

voltage, which require a specialised set-up which is hard to dispose of after one 

analytical use [15]. 

1.3 Research Objectives and Scope of the Thesis 

The primary objective of this thesis is to design a modular on-chip 

micropump to handle a microscale fluid transportation process. The specific goals 

can be further expressed as: 

 

(1) To develop a micropump with a modular set-up and to study its pumping 

behaviour in a modular configuration.  

(2) To explore the bi-directional pumping and mixing multifunctional features that 

contribute to the modular architecture. 

 

To accomplish these objectives, two different micropump architectures were 

proposed and their pumping characteristics were studied. The setup of the first 
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architecture is to demonstrate the feasibility of the on-chip pumping operation in an 

external separated actuation mechanism. The actuation mechanism will focus on a 

solenoid-based electromagnetic actuator. As the device is meant for in vitro LOC 

application, disposability will be highlighted in this thesis. The disposable feature of 

the device can be constructed by using widely available and cost-effective polymer 

and the utilisation of low cost rapid prototyping fabrication technology. 

 

Structurally, the design of the chip which functions to regulate the flow is made 

in a planar configuration in order to fit within functional modules. To have a wider 

selectivity of the sample selection, such as particle-laden samples, no moving flap 

valve is involved in the construction of the structure, as such a moving valve might 

be susceptible to the risk of particle clogging. The focus on the chip design mainly 

concentrates on microchannel manipulation, where the fluid dynamics involved in 

flow regulation is examined. By altering the fluid dynamics in the microchannel, bi-

directional flow and mixing functions can be established. This multifunctional 

behaviour is investigated in the second modular architecture. 

1.4 Research Methodology 

Basically, the micropump architecture consists of two basic modules: 

actuation module and flow rectification modules. The actuation module creates 

pressure difference within the pump chamber, whereas the flow rectification module 

directs the flow stream. In this thesis, the flow behaviour of the flow rectification 

module was studied with diffuser and gourd-shape elements. In addition, bi-

directional and mixing performances of the gourd-shape elements were 

characterised. 

 

To design the flow rectification module, finite element modelling (FEM) was 

employed to find the optimum parameters. The diffuser channel was evaluated based 

on minor loss theory with the investigation of the diffuser angle opening, curvature 

ratio and entrance length study. Besides, the membrane which creates stroke volume 

within the pump was judged on its shape geometry, material, thickness and surface 
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interaction with plunger contact. After gaining the data, the flow rectification 

modules were fabricated with replication approach. The diffuser module was 

fabricated through rapid hot embossing technology with PCB mould in PMMA 

material. On the other hand, the gourd-shape module was constructed with PDMS 

material via photolithography technique in mould fabrication.  

 

Experimental characterisation of the actuation module and flow rectification 

module include the pump flow rate performance at low operating frequency, nominal 

frequency, and at back pressure variation with the separation distance of 2.0 mm, 

2.5 mm and 3.0 mm. Lastly, the flow rate and back pressure performance of the 

micropump was compared with its reported counter parts. 

1.5 Significant Findings 

This section describes the contributions of the research works to the body of 

knowledge in the field of micropumps. Experimental investigation of the modular 

micropump development is presented in this thesis. The major outcomes of this 

thesis can be summarised as follows: 

 

(1) The pinch mechanism was introduced by using an electromagnetic solenoid for 

the modular setup. Experimental investigation was conducted on the behaviour 

of flow in the diffuser channel at the specified pinch mechanism. 

(2) To address the low cost objective in pump construction, a low cost and more 

user-friendly prototyping protocol was developed in the module fabrication. 

Low cost equipments such as a printed circuit board (PCB) mould, laboratory 

oven, vice clamp and aluminium sheets were employed in the thermoplastic 

replication. 450 µm thick diffuser channels (replica) were successfully 

fabricated. 

(3) To the best of the author‟s knowledge, no reports exist on flow regulation 

based on the dynamic rectification principle. The direction of flow depends on 

the flow dynamics induced by the pinch operation and the fixed geometrical 

structure of the chamber. This principle added extra credit in making the pump 
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more multifunctional such as for use in bi-directional pumping and particle 

mixing.  

1.6 Thesis Outline  

A review of the micropump development associated with the present study is 

given in Chapter 2, including the basic components of the mechanical micropump, 

the mixer and rapid prototyping technique. Then, in Chapter 3, the conceptual design 

of the modular setup is illustrated with the experimental investigation on the 

actuation module, in which an electromagnetic actuator will be utilised. In addition, a 

numerical simulation was performed to study the operating geometrical parameters 

of the diffuser flow module, and the results obtained will act as a guideline in device 

development. Subsequently, the development of the diffuser element in the flow 

rectification module is described in Chapter 4. In Chapter 4, the diffuser flow module 

is realised and experimental characterisation of the diffuser module is shown. Next, 

by changing the diffuser and chamber elements, a bi-directional flow can be 

established with the developed gourd-shaped chamber module in Chapter 5. In 

addition, the mixing characteristics contributed by the gourd-shaped module are 

investigated. Finally, the thesis concludes in Chapter 6 with an outlook on future 

project development. 
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