THERMAL, STRUCTURAL AND OPTICAL PROPERTIES OF LITHIUM NIOBATE TELLURITE GLASS DOPED ERBIUM AND NEODYMIUM

NURHAFIZAH BINTI HASIM

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science (Physics)

> Faculty of Science Universiti Teknologi Malaysia

> > APRIL 2014

I dedicate this thesis to my lovely parents, Hasim bin Mohd Said and Rositah binti Abdul Kadir; my wonderful family members and all my friends who's helping me throughout this thesis. Thank you...

ACKNOWLEDGEMENT

I'm really grateful to Allah S.W.T for giving me the courage, strength and patience to complete this research.

I would like to express my thanks to my supervisor, Assoc. Prof. Dr. Md Supar Bin Rohani for being resourceful, inspiring, supporting and understanding during my study. To all the staffs in Physics Department (UTM) thank you for the caring and encouragement given all along. To all my friends I had and made during the time of my study, you made my days went on like there was always something to look forward.

My thanks also to MyBrain15 (MyMaster) and UTM for the financial support throughout this research study, which is really rewarding.

ABSTRACT

A series of tellurite glasses of composition (70-x-y)TeO₂-15Li₂CO₃-15Nb₂O₅ $x \text{Er}_2 \text{O}_3 - y \text{Nd}_2 \text{O}_3$ doped Er^{3+} and Nd^{3+} , with x=0, 1.0 mol%; $0 \le y \le 1.0$ mol% were prepared by using melt quenching technique. The glass phase and thermal behaviour were investigated using X-ray diffraction (XRD) and differential thermal analysis (DTA) while the structural and optical properties were investigated using Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible-near infrared spectroscopy (UV–VIS–NIR) and photoluminescence spectroscopy. The XRD spectra confirmed that the glass was amorphous as no sharp peaks were observed. The thermal parameters particularly the thermal stability is around 291.5°C and Hruby criterion of around 0.82 to 0.93. The structural properties of the glass represented by the FTIR spectrum indicate that as Nd₂O₃ content increases, the sharp infrared absorption peaks shifted from 474.7 cm⁻¹ to 499.4 cm⁻¹. These peaks are due to Nb–O, Te–O–Te and O–Te–O bond linkage bending vibration. For TeO₄ trigonal bipyramid, the peak occurred at 676.5 cm⁻¹ whereas for TeO₃ trigonal pyramid, two infrared band peaks were observed at 787.5 cm⁻¹ and 887.6 cm⁻¹. The absorption peaks around 1382.7 cm⁻¹ is due to the Te–O–Nb stretching vibration while peaks at 1635.5 cm⁻¹ and 3411.7 cm⁻¹ are due to the stretching vibrations of the hydroxyl group participating in the strong metal bonding as well as in the hydrogen bonding, respectively. The UV-VIS-NIR spectrum exhibits absorption peaks corresponding to transitions from both ground state of Erbium, ${}^{4}I_{15/2}$ to the excited state of ${}^{4}F_{7/2}$, ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$, ${}^{4}I_{9/2}$, ${}^{2}H_{9/2}$, ${}^{4}I_{11/2}$, ${}^{4}I_{3/2}$ and ${}^{4}I_{13/2}$ and Neodymium, ${}^{4}I_{9/2}$ to the excited state of ${}^{2}G_{11/2}$, ${}^{2}G_{9/2}$, ${}^{2}G_{7/2}$, ${}^{4}F_{9/2}$, ${}^{4}I_{3/2}$ and ${}^{4}I_{15/2}$. The up conversion was observed in the luminescence spectra by the red emission at around 633 nm which is due to the transition from ${}^{4}F_{9/2} \rightarrow {}^{4}I_{9/2}$. The down conversion was represented by the green emission at 497 nm due to transition from ${}^{2}G_{9/2} \rightarrow {}^{4}I_{9/2}$.

ABSTRAK

Sistem kaca tellurit dengan komposisi (70-x-y)TeO₂-15Li₂CO₃-15Nb₂O₅ $x \text{Er}_2 \text{O}_3 - y \text{Nd}_2 \text{O}_3$ dop Er^{3+} dan Nd^{3+} , dengan x=0, 1.0 mol%; $0 \le y \le 1.0 \text{ mol}\%$ telah diperoleh menggunakan teknik pelindapan leburan. Fasa dan ciri terma kaca telah dikaji menggunakan teknik pembelauan sinar-X (XRD) dan penganalisa perbezaan terma (DTA). Struktur dan sifat optik sampel telah dikaji menggunakan spektroskopi inframerah transformasi Fourier (FTIR), spektroskopi ultraungu-nampak-inframerah dekat (UV-VIS-NIR) dan spektroskopi fotopendarcahaya. Spektrum XRD mengesahkan sampel kaca adalah amorfus kerana tiada sebarang puncak tajam dicerap. Parameter terma terutamanya kestabilan terma adalah 291.5°C dan kriteria Hruby berlaku dalam lingkungan 0.82 hingga 0.93. Selain itu, spektrum FTIR menunjukkan bahawa pertambahan kandungan Nd₂O₃ menyebabkan puncak penyerapan Inframerah akan beranjak dari 474.7 cm⁻¹ kepada 499.4 cm⁻¹. Anjakan ini menunjukkan mod getaran lenturan ikatan Nb-O, Te-O-Te dan O-Te-O. Di samping itu, mod getaran trigonal bipiramid TeO₄ berlaku pada 676.5 cm⁻¹ manakala dua getaran trigonal piramid TeO₃ masing-masing berlaku pada 787.5 cm⁻¹ dan 887.6 cm⁻¹. Puncak penyerapan disekitar 1382.7 cm⁻¹ terhasil disebabkan oleh getaran regangan Te–O–Nb dan puncak penyerapan sekitar 1635.5 cm⁻¹ dan 3411.7 cm⁻¹ adalah disebabkan oleh getaran regangan kumpulan hidroksil yang terlibat dalam ikatan logam dan ikatan hidrogen. Spektrum UV–VIS–NIR yang telah diperoleh menunjukkan puncak penyerapan dengan transisi dari keadaan asas Erbium, ${}^{4}I_{15/2}$ ke keadaan pengujaan ${}^{4}F_{7/2}$, ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$, ${}^{4}I_{9/2}$, ${}^{2}H_{9/2}$, ${}^{4}I_{11/2}$, ${}^{4}I_{3/2}$ dan ${}^{4}I_{13/2}$. Puncak penyerapan yang berlaku pada Neodymium melalui transisi dari keadaan asas, ${}^{4}I_{9/2}$ kepada keadaan pengujaan ${}^{2}G_{11/2}$, ${}^{2}G_{9/2}$, ${}^{2}G_{7/2}$, ${}^{4}F_{9/2}$, ${}^{4}I_{3/2}$ dan ⁴I_{15/2}. Transisi menaik dicerap dalam spectrum pendarcahaya oleh pancaran merah pada sekitar 633 nm yang disebabkan oleh transisi dari ${}^{4}F_{9/2} \rightarrow {}^{4}I_{9/2}$. Transisi menurun diwakili oleh pancaran hijau pada 497 nm yang disebabkan oleh transisi dari ${}^{2}G_{9/2}$ \rightarrow ⁴I_{9/2}.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iv
	ACKNOWLEDGEMENTS	V
	ABSTRACT	vi
	ABSTRAK	vii
	TABLE OF CONTENTS	viii
	LIST OF TABLES	xi
	LIST OF FIGURES	xiii
	LIST OF SYMBOLS	xviii
	LIST OF APPENDICES	xxi
1	INTRODUCTION	
	1.1 General Introduction	1
	1.2 Research Problem Statement	5
	1.3 Research Objectives	6
	1.4 Scope of Research	6
	1.5 Significance of Research	7
	1.6 Thesis Outline	7
2	LITERATURE REVIEW	

2.1 Introduction	9
2.2 Glass	9

	2.2.1 Glass Formation	10
	2.2.2 Glass Networks	13
	2.2.2.1 Network Formers	15
	2.2.2.2 Network Modifiers	15
	2.2.2.3 Intermediate Modifier	17
	2.2.2.4 Doping Salt	17
2.3	Glass Preparation Techniques	18
2.4	Tellurite Glass Structure	19
2.5	The Lanthanides and Transition Metals	22
2.6	X - Ray Diffraction	26
2.7	Thermal Analysis	29
2.8	FTIR Spectroscopy	32
2.9	UV – Vis – NIR Spectroscopy	36
	2.9.1 Introduction	36
	2.9.2 Interband Absorption	38
2.10	0 Luminescence	41
	2.10.1 Photoluminescence	42
2.1	1 Overview of Upconversion Process	43
	2.11.1 Excited State Absorption (ESA)	44
	2.11.2 Energy Transfer Upconversion (ETU)	45
	2.11.3 Photon Avalanche (PA)	49

3 RESEARCH METHODOLOGY

3.1 Introduction	50
3.2 Sample Preparation	51
3.3 X – Ray Diffraction (XRD)	53
3.4 Differential Thermal Analysis (DTA)	54
3.5 Fourier Transform Infrared Spectroscopy (FTIR)	54
3.6 UV – Vis – NIR Spectroscopy	55
3.7 Photoluminescence Spectroscopy	56

4 **RESULTS AND DISCUSSION**

4.1 Introduction	57
4.2 Glass Composition	57
4.3 X – Ray Spectra	59
4.4 Thermal Stability	60
4.5 Fourier Transform Infra – red Spectroscopy	65
4.6 UV – Vis – NIR Spectroscopy	72
4.6.1 Absorption Spectra	72
4.6.2 Optical Energy Gap, E_{opt} and Urbach Energy, E_{tail}	76
4.7 Luminescence	81
4.7.1 Upconversion Luminescence	81
4.7.2 Down Conversion Luminescence	86

5 CONCLUSIONS AND FUTURE OUTLOOK

5.1 Introduction	93
5.2 Conclusions	94
5.3 Suggestions	98

REFERENCES

Appendices A – B

111 – 116

99

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Substances of glass former.	13
2.2	Distances between components in structure of α –TeO ₂ .	21
2.3	Classification of infrared radiation.	32
3.1	The composition of $TeO_2 + Li_2CO_3 + Nb_2O_5 + Er_2O_3 + Nd_2O_3$ system.	52
4.1	Glass composition and appearance of $(70-x-y)$ TeO ₂ + 15 Li ₂ CO ₃ + 15 Nb ₂ O ₅ + x Er ₂ O ₃ + y Nd ₂ O ₃ glass system.	58
4.2	Glass composition and thermal characteristics of $(70-x-y)$ TeO ₂ +15Li ₂ CO ₃ +15Nb ₂ O ₅ + <i>x</i> Er ₂ O ₃ + <i>y</i> Nd ₂ O ₃ glass system.	62
4.3	Glassformingtendencyof $(70-x-y)$ y)TeO2+15Li2CO3+15Nb2O5+xEr2O3+ yNd2O3 glass system.	63
4.4	The FTIR peaks positions of $(70-x-y)\text{TeO}_2 + 15\text{Li}_2\text{CO}_3 + 15\text{Nb}_2\text{O}_5 + x\text{Er}_2\text{O}_3 + y\text{Nd}_2\text{O}_3$ glass system.	66
4.5	IR Band (in cm ⁻¹) of FTIR spectra of $(70-x-y)TeO_2 + 15Li_2CO_3 + 15Nb_2O_5 + xEr_2O_3 + yNd_2O_3$ glass system.	67
4.6	Absorption band energy, E (cm ⁻¹) of $(70-x-y)$ TeO ₂ + 15 Li ₂ CO ₃ + 15 Nb ₂ O ₅ + x Er ₂ O ₃ + y Nd ₂ O ₃ glass system.	73

4.7 Calculated Optical Band Gap (E_{opt}) of $(70-x-y)TeO_2 + 77$ $15Li_2CO_3 + 15Nb_2O_5 + xEr_2O_3 + yNd_2O_3$ glass system.

4.8 Calculated Urbach Energy (
$$E_{tail}$$
) of (70-*x*-*y*)TeO₂ + 15Li₂CO₃ 80
+ 15Nb₂O₅ + *x*Er₂O₃ + *y*Nd₂O₃ glass system..

4.9 Emission transition of previous study on various tellurite 92 glass systems.

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Relationship between specific volume and temperature for glass and crystal (Sahar, 1998).	11
2.2	Basic structure of glass former (Azman, 2010).	15
2.3	Structure of glass modifier (Azman, 2010).	16
2.4	Schematic picture of the TeO_2 unit in structure of α – TeO_2 (El-Mallawany, 2002).	20
2.5	Structure units in tellurite glass (a) TeO_4 trigonal bipyramid (TBP) and (b) TeO_3 trigonal pyramid (TP).	22
2.6	The relative energy level of the different electronic configurations, [Xe] $4f^{n}6s^{2}$ or [Xe] $4f^{n-1}5d^{1}6s^{2}$ of neutral lanthanide atoms (El – Mallawany, 2002).	25
2.7	Bragg's law for periodic arrangement of atoms.	27
2.8	XRD pattern of CLN (congruent lithium niobate) crystal (Zhang et.al., 2011).	28
2.9	XRD pattern of $(80 - x)$ TeO ₂ – 20Na ₂ O - (x) Yb ₂ O ₃ glass system (Sahar <i>et.al.</i> , 2011).	28

2.10	A typical DTA curve of the tellurite glasses (Sulhadi, 2007).	31
2.11	TGA–DTA curves of the $0.5Nd_2O_3$ – $6.5La_2O_3$ – $3Na_2O$ – $25ZnO$ – $65TeO_2$ glass (Sobczyk, 2013).	31
2.12	Types of stretching (a) symmetric and (b) asymmetric.	34
2.13	Types of bending (a) in-plane rocking, (b) in-plane scissoring, (c) out-of-plane wagging and (d) out-of-plane twisting.	34
2.14	FTIR spectra of some of the samples studied: (a) binary TeO_2 -Nb ₂ O ₅ samples; (b) binary TeO_2 -TiO ₂ samples; (c) ternary 5 mol% TiO ₂ samples; (d) ternary 10 mol% TiO ₂ samples (Villegas <i>et.al.</i> , 2007).	35
2.15	Energy diagram of two separated bands in solid (Mark, 2010).	39
2.16	Schematic diagram for direct band gap in solids.	40
2.17	Schematic diagram for indirect band gap in solids.	41
2.18	Radiationless transfer of energy process.	42
2.19	General scheme related to ESA (Joubert, 1999).	44
2.20	ET followed by ESA.	46
2.21	Successive Energy Transfers.	46
2.22	Cross Relaxation Upconversion.	47
2.23	Cooperative Sensitization.	47
2.24	Cooperative Luminescence.	48
2.25	Energy scheme for a simple PA process.	49
3.1	Flow chart of research	51

3.2	Flow Chart of Sample Preparation.	53
4.1	X-Ray Diffraction of $68TeO_2 + 15Li_2CO_3 + 15Nb_2O_5 + 1Er_2O_3 + 1Nd_2O_3$ glass system.	60
4.2	DTA curve of $(70-x-y)$ TeO ₂ + 15 Li ₂ CO ₃ + 15 Nb ₂ O ₅ + x Er ₂ O ₃ + y Nd ₂ O ₃ glass system.	61
4.3	The relationship glass forming tendency, H_R of (70- <i>x</i> - <i>y</i>) TeO ₂ + 15Li ₂ CO ₃ + 15Nb ₂ O ₅ + <i>x</i> Er ₂ O ₃ + <i>y</i> Nd ₂ O ₃ glass system.	64
4.4	Infrared transmission spectra of (70- <i>x</i> - <i>y</i>) $\text{TeO}_2 + 15\text{Li}_2\text{CO}_3 + 15\text{Nb}_2\text{O}_5 + x\text{Er}_2\text{O}_3 + y\text{Nd}_2\text{O}_3$ glasses at various compositions.	66
4.5	The linkage bending vibrations against Nd ₂ O ₃ (mol%).	68
4.6	The Te – O stretching mode vibrations against Nd_2O_3 (mol%).	69
4.7	The Te – O bending vibrations against Nd_2O_3 (mol%).	70
4.8	The Te – O bending vibrations against Nd_2O_3 (mol%).	70
4.9	Typical UV-Vis-NIR absorption spectra of $(70-x-y)$ TeO ₂ + 15 Li ₂ CO ₃ + 15 Nb ₂ O ₅ + x Er ₂ O ₃ + y Nd ₂ O ₃ glass system.	72
4.10	Typical α versus hv spectra of $(70-x-y)$ TeO ₂ + 15Li ₂ CO ₃ + 15Nb ₂ O ₅ + x Er ₂ O ₃ + y Nd ₂ O ₃ glass system.	73
4.11	UV-Vis-NIR 400 nm to 450 nm absorption spectra of $(70-x-y)$ TeO ₂ + 15Li ₂ CO ₃ + 15Nb ₂ O ₅ + x Er ₂ O ₃ + y Nd ₂ O ₃ glass system.	75
4.12	A typical graph of $(\alpha h\omega)^{1/2}$ vs h ω of $(70-x-y)$ TeO ₂ + 15Li ₂ CO ₃ + 15Nb ₂ O ₅ + x Er ₂ O ₃ + y Nd ₂ O ₃ glass system.	76

4.13 A typical graph of $(\alpha h \omega)^2$ vs h ω of (70-x-y)TeO₂ + 15Li₂CO₃ + 77 15Nb₂O₅ + xEr₂O₃ + yNd₂O₃ glass system.

- 4.14 Dependence of optical band gap on molar percentage of Nd₂O₃ for 78 direct and indirect transitions in $(70-x-y)TeO_2 + 15Li_2CO_3 + 15Nb_2O_5 + xEr_2O_3 + yNd_2O_3$ glass system.
- 4.15 A typical graph of ln α vs h ω of (70-*x*-*y*)TeO₂ + 15Li₂CO₃ + 80 15Nb₂O₅ + *x*Er₂O₃ + *y*Nd₂O₃ glass system.
- 4.16 Dependence of Urbach energy on molar percentage of Nd_2O_3 in 81 (70-x-y)TeO₂ + 1 Li₂CO₃ + 15Nb₂O₅ + xEr₂O₃ + yNd₂O₃ glass system.
- 4.17 Typical luminescence spectra of $(70-x-y)TeO_2 + 15Li_2CO_3 + 82$ $15Nb_2O_5 + xEr_2O_3 + yNd_2O_3$ glass system under 725 nm excitation. The emission peaks of the transitions are shown.
- 4.18 Energy level schemes of Er^{3+} and Nd^{3+} with relative transitions 84 and energy transfer processes between Er^{3+} and Nd^{3+} .
- 4.19 Red emission dominant intensity dependence on molar percentage 85 of Nd₂O₃ in (70-x-y)TeO₂ + 15Li₂CO₃ + 15Nb₂O₅ + xEr₂O₃ + yNd₂O₃ glass system.
- 4.20 Orange emission dominant intensity dependence on molar 86 percentage of Nd₂O₃ in (70-x-y)TeO₂ + 15Li₂CO₃ + 15Nb₂O₅ + xEr₂O₃ + yNd₂O₃ glass system.
- 4.21 Typical luminescence spectra of $(70-x-y)TeO_2 + 15Li_2CO_3 + 87$ $15Nb_2O_5 + xEr_2O_3 + yNd_2O_3$ glass system under 350 nm excitation. The emission peaks of the transitions are shown.
- 4.22 Energy level schemes of Er^{3+} and Nd^{3+} with relative transitions 89 and energy transfer processes between Er^{3+} and Nd^{3+} .
- 4.23 Green emission dominant intensity dependence on molar 90 percentage of Nd₂O₃ in (70-x-y)TeO₂ + 15Li₂CO₃ + 15Nb₂O₅ +

 $xEr_2O_3 + yNd_2O_3$ glass system.

- 4.24 Orange emission dominant intensity dependence on molar 91 percentage of Nd₂O₃ in (70-x-y)TeO₂ + 15Li₂CO₃ + 15Nb₂O₅ + xEr₂O₃ + yNd₂O₃ glass system.
- 4.25 Red emission dominant intensity dependence on molar percentage 91 of Nd₂O₃ in (70-x-y)TeO₂ + 15Li₂CO₃ + 15Nb₂O₅ + xEr₂O₃ + yNd₂O₃ glass system.

LIST OF SYMBOLS

α (ν)	- Urbach function
α	- absorption coefficient
αω	- fundamental of absorption edge
ΔE	- width of band tails of localized states
λ	- wavelength
$\Phi/ \Phi_1/ \Phi_2$	- photon incident flux
ω	- frequency dependence
ħω/ hv	- photon energy
μ	- reduced mass of cation – anion molecules
А	- absorbance
А	- constant
ax	- axial
В	- constant
BO	- bridging oxygen
с	- speed of light
CB	- conduction band
CR	- cross relaxation
d	- distance between atomic layers in crystal
\mathbf{E}_{f}	- final state of energy
Eg	- energy gap

E_i	- initial state of energy
E _{opt}	- optical band gap
Er_2O_3	- Erbium (III) oxide
ESA	- excited state absorption
ET	- energy transfer
ETU	- energy transfer upconversion
eq	- equatorial
f	- force constant
FTIR	- Fourier Transform Infrared
H _R	- Hruby criterion
Ι	- anti – stokes emission intensity
IR	- infrared
k	- momentum
Li ₂ CO ₃	- Lithium carbonate
m_o	- atomic weight of cation o
m_r	- atomic weight of cation r
n	- integer
Nb_2O_5	- Niobium pentoxide
NBO	- non – bridging oxygen
Nd_2O_3	- Neodymium (III) oxide
NIR	- near infrared
р	- index characterize of optical absorption process
PA	- photon avalanche
q	- phonon
R ₁	- ground pumping rates
R_2	- excited pumping rates
SRO	- short – range order

Т	- temperature
t	- thickness of glass sample
tbp	- trigonal bipyramid
T _c	- crystallization temperature
TeO2	- Tellurium dioxide
Tg	- glass transition temperature
T _I	- temperature interval
T _m	- melting point temperature
tp	- trigonal pyramid
UV	- ultraviolet
V	- specific volume
k	- wave number
VB	- valence band
Vis	- visible
XRD	- X – ray diffraction

LIST OF APPENDIX

APPENDIX	TITLE	PAGE
А	Batch Calculations	141
В	FTIR Spectra of (70-x-y) $TeO_2 - 15 Li_2CO_3 - 15 Nb_2O5 -$ (x) $Er_2O_3 - (y) Nd_2O_3 System$	143

CHAPTER 1

INTRODUCTION

1.1 General Introduction

Glass history is very long but yet interesting to know and understood. Moreover, glasses are known as the oldest as well as the newest materials in the world where it is used for variety applications in everyday life. Glass has been considered by researchers in many applications. Glass has no long-range order, when there is no regularity in the arrangement of its molecular constituents on a scale large than a few times the size of these groups (Doremus, 1973). Lack of precise experimental information on the properties and structure of glass or even amorphous solids are considered difficult in theoretical analysis for researcher. Therefore, research needs to fill this gap for future benefits where including fundamental bases on new optical glasses together with new application such as second- harmonic generation, optical switches, third-order-nonlinear optical materials, optical amplifiers, waveguide lasers, bulk lasers and up- conversion glasses (El- Mallawany, 2002; Hai Lin *et.al.*, 2005).

A solid lacking long range positional order is called non-crystalline solids (NCS) where is produced by melt-cooling generally referred to as glass (Prabhat,

1996). There are many techniques can be used to form glass material including cooling from the liquid state (Burger, 1992; El-Moneim, 2002; Hai Lin *et.al.*, 2003; Jianhu *et.al.*, 2003), pressure quenching (Holloway *et.al.*, 1992; Caprion *et.al.*, 2002), sol-gel formation, condensation from vapour, solution hydrolysis, anodization and bombardment of crystal by high energy particles or shock wave (Dehelean *et.al.*, 2009). The most important and widely used glass formation is cooling from liquid state. Primary reasons due to the research on glass and non-crystalline solids are divided into three where the first reason suggested all liquids could be rendered to glassy state if the crystal growth were suppressed where it was based on theoretical understanding twenty years ago. The experimental research is the second reason that shown many non- crystalline solids can be prepared by other process other than cooling from liquid state. Lastly the third reason is the increasing awareness in industry of fabrication viewpoint concludes that glasses are better than crystal where glass can play an important role in electronics sector (Sulhadi, 2007).

The most stable oxide of tellurium (Te) is tellurium dioxide (TeO₂) with the melting point of 773 °C. Based on fundamental of chemistry, transitional position of Te between metals and non-metals are long held special significance and tellurium oxide are stable which attract researchers (El-Mallawany, 2002). Furthermore, the valance characteristics of Te results in two sets of Te-O distance conclude that TeO2 is a covalent with highly deformed octahedron structure. In addition, three tellurium atoms shared with oxygen atom where symmetry requirements force distortion of octahedral to accommodate them into a regular repeating lattice. Therefore, this distortion could produce a structure energetically similar to the vitreous state where only short- range orders appear (Sulhadi, 2007). Moreover, TeO₂-based glasses has scientific and technical interest because of their low melting temperature, high refractive index, high dielectric constant and high transmittance from ultraviolet (UV) to near infrared (NIR) (Burger et.al., 1992; Annapurna et.al., 2000; Ovcharenko et.al., 2001; El-Moneim, 2002). TeO₂ have low phonon energies, high refractive indices, high rare earth solubility, infrared transmission up to 5 µm and high gain per unit length (Oermann et.al., 2009) indicates a potential application in laser host and pressure sensors such as optical waveguide laser and amplifier (Hai Lin *et.al.*, 2003). Zinc tellurite glasses is a suitable host for optically active rareearth ions (Rosmawati *et.al.*, 2007) because it prove low-phonon-energy about 780cm⁻¹ (Shaoxiong *et.al.*, 2008) environment which minimize nonradiative losses as well as possess good chemical durability and optical properties (Sulhadi *et.al.*, 2007).

Rapid developments in laser technology and construction of magneto-optic device in the past decade have lead to an extensive study on rare-earth glasses. More important the understanding of structures of the materials, together with the preparation of high-quality glasses and the development of new preparative techniques are far behind the needs of today's technology. Incorporation of rare-earth into various glass oxides is a key to the optical devices development such as infrared lasers, infrared-visible converters, fibre and waveguide amplifiers for the use of optical transmission network (Azman *et.al.*, 2010; Azman, 2012). In addition, trivalent rare-earth ions (RE³⁺) are attractive as active elements in materials because of many fluorescence state to choose from 4f electron configuration where most of it located in visible range which contributes to easy pumping, tunable dye laser. Therefore, these glasses usually called as activated glasses where they are capable of emitting radiation (luminescence) upon excitation (Azman, 2012). Hence, rare-earth ion will have capability of colouring glass through absorptive transitions together with a set of states capable of emitting light (Sulhadi, 2007).

An addition of Erbium (Er^{3+}) and Neodymium (Nd^{3+}) into tellurite glass will lead to a high possibility of active media for a solid-state lasers operating in three different regions which are the visible, near infrared (NIR) and infrared region (IR) spectral region (Azman, 2012). Energy transfer between both of these rare-earth ions exist as energy absorbed by one of the rare earth, Er^{3+} ion which appear as fluorescence may be lost to the lattice through the intermediary of second rare-earth, Nd³⁺ ion where energy gained by one of rare-earth ion via transfer from a second could produce an enhancement of its emission (Shen *et.al.*, 2008). Lithium Niobate based tellurite glass codoped with rare earth has been receiving special interest due to their ability to enhance the performance of tellurite glass for their applications especially in laser and photonics. From the previous research, there is less research on the photoluminescence investigation of the optical up-conversion in rare earth, Erbium and Neodymium co-doped with lithium niobate tellurite glass although both of the elements given rise to various luminescence band in many host materials (Longjun *et.al.*, 2007; Shiqing *et.al.*, 2008).

Luminescence is the emission of light by a substance which occurs when an electron returns to the electronic ground state from an excited state and loses its excess energy as a photon. There are energy gap for conducting electrons; therefore, there is an energy gap between the conduction and valence electron states. Under normal conditions electrons are forbidden to have energies between the valence and conduction bands. If a light particle (photon) has energy greater than the band gap energy, then it can be absorbed and thereby raise an electron from the valence band up to the conduction band across the forbidden energy gap. Moreover, the upconversion process happens when the excitation with lower energy radiation gives rise to higher energy luminescence (Ruan et.al., 1998). The up-conversion in rareearth doped materials caused by excited- state absorption or energy transfer from different rare-earth ions (Huang et.al., 2005). In addition, Er³⁺ and Nd³⁺ doping are important to obtain efficient up-conversion because of the host material, in this case is tellurite which has low-phonon-energy can reduce the non-radiative loss due to multiphonon relaxation to achieve strong up-conversion luminescence (Shiqing et.al., 2005) and it is proved to be the most stable host material (Azman et.al., 2010). As for the excitation used for up conversion are 585nm excitation (Azman, 2012) and 980nm laser diode (LD) excitation (Shiqing et.al., 2008)

Host material, lithium niobate tellurite is also an important factor for obtaining high efficient up-conversion emission (Lakshminarayana *et.al.*, 2008) where the low-phonon-energy can reduce the nonradiative loss due to multiphonon relaxation and thus yields a strong up-conversion signal (Zhe Jin *et.al.*, 2007). In

addition, when the dopant, Er and Nd concentration is increase; the results in lower fluorescence are higher (Eakins *et.al.*, 2004). The excitation with lower energy radiation happened will gives rise to higher energy luminescence, then the up-conversion process took place (Ruan *et.al.*, 1998). Furthermore, there is no exact excitation spectrums used to find the up-conversion of this glass. Moreover, the up-conversion phenomenon usually used in explaining about laser processes where the emission in $\text{Er}^{3+}:\text{Nd}^{3+}$ tellurite glass always occurs at 4f electron level (Cherif *et.al.*, 2010). In this study, the interaction among optically excited ions of $\text{Er}^{3+}:\text{Nd}^{3+}$ systems in tellurite glass which leads to the discovery of new laser based on the energy transfer in neither single ions or multi ions material are presented together with a suitable excitation used to find the emission of this glass which cause an enhancement of luminescence emission (Xujie *et.al.*, 2008).

1.2 Research Problem Statement

Rare-earth doped tellurite glasses doped with two rare-earths, erbium and neodymium has been receiving special interest due to their ability to enhance the performance of tellurite glass for their applications. Even though there are numbers of research on tellurite glass has been done, yet the characteristics of Er^{3+} and Nd^{3+} ions doped tellurite glass has not been fully investigated. In addition, in spite of few experiments on tellurite doped with Er^{3+} and Nd^{3+} ions, the clear explanation about the role played are still lacking. Few studies have been done in this system but are limited to certain properties. Therefore, in the present study we will investigate the role played by the neodymium dopant on optical properties by spectroscopic techniques which are UV-Vis, Photoluminescence and FTIR spectrometer.

1.3 Research Objectives

In this research, a stable with wide formation ranges of tellurite glasses are prepared to full fill these objectives which are:

- i. To prepare $Li_2CO_3 Nb_2O_5 TeO_2$ (LNT) where $(70-x-y)TeO_2 15Li_2CO_3 15Nb_2O_5 (x)Er_2O_3 (y)Nd_2O_3$ system (x = 0 mol % and 1.0 mol %; 0 mol % $\leq y \leq 1.0 \text{ mol }\%$).
- ii. To characterize thermally, optically and structurally of Er³⁺ and Nd³⁺ doped tellurite glasses.
- iii. To analyze the emission of the glass system the role of Nd^{3+} doped.

1.4 Scope of Research

In order to achieve the objectives, the research has been divided into several scopes which are:

- Preparation of Erbium and Neodymium co- doped with lithium niobate tellurite by using the melt quenching technique.
- Determination of thermal stability of glass system using Differential Thermal Analysis.
- Determination of the structural and optical properties of glass system using UV-VIS-NIR Spectroscopy, Photoluminescence Spectroscopy and Infra-Red Spectroscopy.

• Determination of the emission and excitation spectra of the glass and determine the optical emission based on the results gain on experimental.

1.5 Significance of Research

This study is fundamentally important to explain the role played neodymium dopant inside tellurite glass by analyzing the absorption, emission, and FTIR spectra of the glass. Hence, from this systematic experimental of fabrication and spectroscopic studies of this sample it would give better suggestions about how to increase the efficiency of tellurite glass for their applications.

1.6 Thesis Outline

This thesis describes the preparation and characterization of Erbium and Neodymium doped tellurite glasses prepared by melt quenching technique. This thesis has been divided into five main chapters. Chapter 1 is the introduction part where the research studies reviewed. In addition, it will also describe the problem statement, objectives, scope of study, choice of glass system and significance of the research as well as the thesis outline. Chapter 2 will describe some theories related to glass such as glass formation, general glass structure as well as structure of tellurite glass. Theory on thermal analysis, XRD, FTIR, UV–Vis–NIR and luminescence spectroscopy will be elucidated in details in this chapter. Chapter 3 will focus on glass preparation, research methodology and experimental techniques. In Chapter 4, all the experimental results and discussion will be given in detail. A special attention will be given on the effect of Er³⁺ and Nd³⁺ doped on thermal, structural and optical

properties of tellurite glass. Finally Chapter 5 will present the major conclusions that can be derive from discussion mentioned in Chapter 4 and future outlook will be presented in this chapter.

REFERENCES

- Adalbert F. (1993). *Amorphous Inorganic Materials and Glasses*. VCH Verlagsgesellshaft mbH., Weinheim (Federal Republic of Germany).
- Annapurna K., Dwivedi R.N., Buddhudu S. (2000). Energy Transfer Luminescence in (Eu³⁺/Nd³⁺): Tellurite Glass. *Optical Materials* 13: 381 388.
- Azman K. (2010). Neodymium/ Erbium codoped Tellurite Glass System. PhD Thesis UTM.
- Azman K. (2012). Absorption and Upconversion of (Nd³⁺/ Er³⁺) doped Tellurite Glass. *IEEE Business, Engineering & Industrial Applications Colloquium*: 38 42.
- Azman K., Sahar M.R., Rohani M.S. (2010). The Upconversion of codoped Nd³⁺/ Er³⁺ Tellurite Glass. World Academy of Science, Engineering and Technology 40: 414 – 417.
- Banerjee S., Tyagi A. (2012). Functional Materials. Elsevier Inc..
- Baizura N., Yahya A.K. (2011). Effects of Nb₂O₅ Replacement by Er₂O₃ on Elastic and Structural Properties of 75 TeO₂ – (10–x) Nb₂O₅ – 15ZnO– (x) Er₂O₃ Glass. Journal of Non –Crystalline Solids 357: 2810 – 2815.
- Benta (Dehelean), Augusta Adriana. Study of some Tellurite Oxide System doped with Rare Earth ions (Eu & Gd) and Transition Metal Ions (Fe, Cu, Mn). PhD Thesis (Summary).

- Bilir G., Ozen G., Tatar D., Ovecoglu M.L. (2011). Judd Ofelt Analysis and Near Infrared Emission Properties of the Er³⁺ Ions in Tellurite Glasses containing WO₃ and CdO. *Optics Communications* 284: 863 – 868.
- Burger H., Kneipp K., Hobert H., Vogel W., Kozhukharov V., Neov S. (1992). Glass Formation, Properties and Structure of Glasses in TeO₂ – ZnO System. *Journal of Non – Crystalline 151*: 134 – 142.
- Caprion D., Schober H.R. (2002). Influence of the Quench Rate and the Pressure on the Glass Transition Temperature in Selenium. *Journal of Chemical Physics* 117(6): 2814 – 2818.
- Chaudhry M.A., Shakeel Bilal M.S., Kausar A.R., Altaf M. (1997). Optical Band Gap of Cadmium Phosphate Glasses Containing Lanthanum Oxide. I. L. Nuovo Cimento Vol.19D: N1.
- Cherif A., Kanoun A., Jaba N., (2010). Red Upconversion Dynamics in Er^{3+} doped $\text{TeO}_2 \text{ZnO}$ Glasses. *Optica Applicata XL(1)*: 109 118.
- Dehelean A., Culea A. (2009). Magnetic Behavior of Europium Ions in some Tellurite Glasses obtained by Sol – Gel Method. Journal of Physics: Conference Series 182: 012064 (1-4).

Doremus R.H., (1973). Glass Science. Wiley – Interscience Publication.

- Eakins D.E., Held M., Norton M.G., Bahr D.F. (2004). A Study of Fracture and Defects in Single Crystal YAG. *Journal of Crystal Growth* 267:502-509.
- El Mallawany (2002). *Tellurite Glasses Handbook: Physical Properties and Data*. CRC Press.
- El Mallawany R., Dirar Abdalla M., Abbas Ahmed I. (2008). New Tellurite Glass:
 Optical Properties. *Materials Chemistry and Physics 109*: 291 296.

- El Moneim A.A. (2002). DTA and IR Absorption Spectra of Vanadium Tellurite Glasses. *Materials Chemistry & Physics* 73: 318 – 322.
- Ezzaty N.A. (2010). The Structure and Luminescence Properties of Magnesium Aluminate Borate Glass doped with Eu and Dy ions. Master Thesis UTM.
- Fabia C.C., Younes M., Luiz F.C.de O., Lilia C.C., Laercio G., Sidney J.L.R. (1999). Raman Scattering, Differential Scanning Calorimetry and Nd³⁺ Spectroscopy in Alkali Niobium Tellurite Glasses. *Journal of Non –Crystalline Solids* 247:58–63.
- Fuxi G., Lei X. (2006). Photonic Glasses. World Scientific Publishing Co. Pte. Ltd..
- Hager I.Z., El Mallawany R., Bulou A. (2011). Luminescence Spectra and Optical Properties of TeO₂ – WO₃ – Li₂O Glasses doped with Nd, Sm and Er Rare Earth Ions. *Physica B* 406: 972 – 980.
- Hai Lin, Dianlai Y., Guishan L., Tiecheng M., Bin Z., Qingda A., Jiayou Y., Xiaojun W., Xingren L., Edwin Yue B.P. (2005). Optical Absorption and Photoluminescence in Sm³⁺ and Eu³⁺ doped Rare Earth Borate Glasses. *Journal of Luminescence 113*: 121 128.
- Hai Lin, Shibin J., Jianfeng W., Feng S., Nasser P., Pun E.Y.B. (2003). Er³⁺ doped Na₂O –Nb₂O₅ TeO₂ Glasses for Optical Waveguide Laser and Amplifier. *Journal of Physics D: Applied Physics 36*: 812 817.
- Halimah M.K., Daud W.M., Sidek H.A.A., Zaidan A.W., Zainal A.S. (2010). Optical Properties of Ternary Tellurite Glasses. *Materials Science – Poland* 28(1):173.
- Halloway D.G. (1973). *The Physical Properties of Glass*. Wykeham Publication (London) Ltd.

- Holloway J.R., Jackie E.D., Alison R.P. (1992). An Internally Heated, Rapid Quench, High Pressure Vessel. *American Mineralogist* 77: 643 – 646.
- Hooi M.O., Halimah M.K., Wan M.D.W.Y. (2012). Optical Properties of Bismuth Tellurite Based Glass. *International Journal of Molecular Science* 13: 4623 2631.
- Huang C.H. (2010). Rare Earth Coordination Chemistry: Fundamental and Applications. John Wiley & Sons (Asia) Pte Ltd.
- Huang X.Y., Hu Z.S., Lin Z.B., Wang G.F. (2005). Growth and Upconversion Emission of Er³⁺/ Er³⁺ codoped LiGd (MoO₄) ₂ Crystal. *Journal of Crystal Growth* 276: 177 – 181.
- Iskandar S.M., Halimah M.K., Daud W.M., Sidek H.A.A., Azhar A.R. (2013). Structural and Optical Properties of Lead–Boro–Tellurite Glasses Induced by Gamma Ray. *International Journal of Molecular Sciences* 14: 3201 – 3214.
- Jianhu Y., Nengli D., Shixun D., Lei W., Lili H., Zhonghong J. (2003). Enhancement of Upconversion Luminescence in Er³⁺ doped Tellurite Glasses due to the Introduction of PbCl₂. *Chemistry Physics Letters* 376: 671 – 675.
- Jin Z., Nie Q., Xu T., Dai S., Shen X., Zhang X. (2007). Optical Transitions and Upconversion Luminescence of Er³⁺/ Yb³⁺ codoped Lead – Zinc – Tellurite Oxide Glass. *Materials Chemistry & Physics 104*: 62 – 67.
- Jlassi I., Elhouichet H., Hraiech S., Ferid M. (2012). Effect of Heat Treatment on the Structural and Optical Properties of Tellurite Glasses doped Erbium. *Journal* of Luminescence 132: 832 – 840.
- Joubert M.F. (1999). Photon Avalanche Upconversion in Rare Earth Laser Materials. *Optical Materials II*: 181 203.

- Jyothi L., Venkatramu V., Babu P., Jayasankar C.K., Benttinelli M., Mariotto G., Speghini A. (2011). Composition and Concentration Dependence of Spectroscopic Properties of Nd³⁺ doped Tellurite and Metaborate Glasses. *Optical Materials 33*: 928 – 936.
- Kabalci I., Tay T., Ozen G. (2011). Optical Absorption and Spectroscopic Properties of Thulium doped (TeO₂)(Nb₂O₅)(TiO₂) Glasses. *Physica Status Solidi C* 8(9): 2625 – 2628.
- Kamalaker V., Upender G., Ramesh Ch., Mouli V.C. (2012). Raman Spectroscopy, Thermal and Optical Properties of TeO₂ – ZnO – Nb₂O₅ – Nd₂O₃ Glasses. *Spectrochimica Acta Part A* 89: 135 – 140.
- Kawasaki S., Honma T., Benino Y., Fujiwara T., Sato R., Komatsu T. (2003). Writing of Crystal Dots and Lines by YAG Laser Irradiation and their Morphologies in Samarium Tellurite Glasses. *Journal of Non- Crystalline* 325: 61 – 69.
- Khattak G.D., Salim M.A. (2002). X-ray Photoelectron Spectroscopic Studies of Zinc Tellurite Glasses. Journal of Electron Spectroscopy and Related Phenomena 123: 47 – 55.
- Lakshminarayana G., Vidya Sagar R., Buddhudu S. (2008). NIR Luminescence from Er³⁺/ Yb³⁺, Tm³⁺/ Yb³⁺, Er³⁺/ Tm³⁺ and Er³⁺ Ions doped Zincborotellurite Glasses for Optical Amplification. *Journal of Luminescence 128*: 690 695.
- Lin J., Wenhai H., Zhengrong S., Chandra S.R., Delbert E.D. (2004). Structure and Non Linear Optical Performance of TeO₂–Nb₂O₅–ZnO Glasses. *Journal of Non Crystalline 336*: 189 – 194.
- Longjun L., Qiuhua N., Tiefeng X., Shixun D., Xiang S., Xianghua Z. (2007). Upconversion Luminescence of Er³⁺/ Yb³⁺/ Nd³⁺ codoped Tellurite Glasses. *Journal of Luminescence 126*: 677 – 681.

Mark F. (2010). 2nd Edition: Optical Properties of Solids. Oxford University Press.

- Mercier J.P., Zambelli G., Kurz W. (2004). *Introduction to Material Science*. Elsevier Science.
- Micheal R.O., Heike E.H., Yahua L., Tze C.F., Tanya M.M. (2009). Index Matching between Passive and Active Tellurite Glasses for use in Microstructured Fiber Lasers: Erbium doped Lanthanum Tellurite Glass. *Optic Express* 17(18): 15578.
- Nandyala S.H., Jose D.D.S.S. (2008). *Physics and Chemistry of Rare Earth Ions doped Glasses*. Trans Tech Publications.
- Neto S.N.M., Ramos A.Y., Barbosa L.C. (2002). Er³⁺ Environment in TeO₂– ZnO - Na₂O Glasses. *Journal of Non – Crystalline Solids 304*: 195 – 199.
- Noorsyam Y. (2008). Optical and Thermal Properties of Samarium Oxide doped Tellurite Glasses. Master Thesis UTM.
- Ovcharenko N.V., Smirnova T.V. (2001). High Refractive Index and Magneto
 –Optical Glasses in the Systems TeO₂ WO₃ Bi₂O₃ and TeO₂ WO₃
 –PbO. *Journal of Non- Crystalline Solids* 291:121–126.
- Poulain M. (1995). New Trends in Halide Glass Compositions. Journal of Non Crystalline Solids 184: 103 – 108.
- Prabhat K. Gupta (1996). Non Crystalline Solids: Glasses and Amorphous Solids. Journal of Non – Crystalline Solids 195: 158 – 164.
- Pye L.D., Sterens H.J., LaCourse W.C. (1972). *Introduction to Glass Science*. Plenum Press New York – London.

- Qiu H.H., Kudo M., Sakata H. (1997). Synthesis and Electrical Properties of Fe₂O₃ MnO₃ TeO₂ Glasses. *Materials Chemistry and Physics 51*: 233 238.
- Rada S., Dehelean A., Stan M., Chelcea R., Culea E. (2011). Structural Studies on Iron Tellurite Glasses Prepared by Sol-Gel Method. *Journal of Alloys and Compounds 509(1)*: 147–151.
- Rajeswari R., Surendra S.B., Jayasankar C.K. (2010). Spectroscopic Characterization of Alkali Modified Zinc – Tellurite Glasses doped with Neodymium. *Spetrochimica Acta A* 77: 135 – 140.
- Rajeswari R., Surendra S.B., Jayasankar C.K. (2010). Spectroscopic Characterization of Alkali Modified Zinc – Tellurite Glasses doped with Neodymium. *Spectrochimica Acta Part A* 77: 135 – 140.
- Raju K.V., Raju C.N., Sailaja S., Reddy B.S. (2013). Judd- Ofelt Analysis and Photoluminescence Properties of RE³⁺ (RE= Er& Nd): Cadmium Lithium Boro Tellurite Glasses. *Solid State Sciences 15*: 102 – 109.
- Rao T.V.R., Reddy R.R., Ahammed Y.N., Parandamaiah M., Hussain N.S.,
 Buddhudu S., Purandar K. (2000). Luminescence Properties of Nd³⁺:TeO₂
 B₂O₃-P₂O₅ Li₂O Glass. *Infrared Physics & Technology* 41:247 258.
- Ramakrishna P.V., Pammi S.V.N., Samatha K. (2013). UV Visible Upconversion Studies of Nd³⁺ Ions in Tellurite Glass. *Solid State Communications 155*: 21–24.
- Reza M.D., Sahar M.R., Ghoshal S.K., Amjad R.J., Samavati A.R. (2013). Effect of AgCl on Spectroscopic Properties of Erbium doped Zinc Tellurite Glass. *Journal of Molecular Structure 1035*: 6 – 12.

- Roslan S.A., Sahar M.R., Ramli A., Ghoshal S.K., Rohani M.S., Khaidzir H. (2012).
 Optical Absorption of Er³⁺/ Nd³⁺ codoped Tellurite Glass. Advanced Materials Research 501: 96 100.
- Rosmawati S., Sidek H.A.A., Zainal A.T., Mohd Zobir H. (2007). IR and UV Spectral Studies of Zinc Tellurite Glasses. *Journal of Applied Sciences* 7(20):3051–3056.
- Ruan Y.F., Wang X.M., Taiju T. (1998). Upconversion in Er³⁺ doped LiNbO₃ Crystals. *Journal of Alloys and Compounds* 275 – 277: 246 – 249.

Sahar M.D. (1998). Sains Kaca. UTM Skudai Johor Darul Ta'zim.

- Sahar M.R., Jehbu A.K., Karim M.M. (1997). TeO₂ ZnO ZnCl₂ Glasses for IR Transmission. *Journal of Non – Crystalline Solids 213 & 214*: 164 – 167.
- Sahar M.R., Noor Isa H. (2011). XRD and IR studies of Yb³⁺ doped Tellurite Glass. *AIP Conf. Proc.* 1328: 202 – 204.
- Sahar M.R., Sulhadi K., Rohani M.S. (2008). The Preparation and Structural Studies in the (80 - x) TeO₂ – 20 ZnO – (x) Er₂O₃ Glass System. *Journal of Non* -*Crystalline 354*: 1179 – 1181.
- Sekiya T., Mochida N., Ohtsuka A., Tonokawa M. (1992). Raman Spectra of MO_{1/2} TeO₂ (M = Li, Na, K, Rb, Cs and T1) Glasses. *Journal of Non – Crystalline Solids 144*: 128 – 144.
- Selvaraju K., Marimuthu K. (2013). Structural and Spectroscopic Studies on Concentration Dependent Sm³⁺ doped Boro – Tellurite Glasses. *Journal of Alloys & Compounds 553*: 273 – 281.

- Sezhian A., Rudra P.B., Ian L.P., Biprodas D. (2012). Mixed Transition Ion Effect in the Glass System: Fe₂O₃ – MnO – TeO₂. Journal of Non- Crystalline Solids 358: 1380 – 1386.
- Shaoxiong S., Animesh J. (2008). Raman Spectroscopic and DTA Studies of TeO₂
 ZnO–Na₂O Tellurite Glasses. *Advanced Materials Research 39 40*: 159 164.
- Shen S., Jha A., Zhang E., Wilson S.J. (2002). Compositional Effects and Spectroscopy of Rare Earths (Er³⁺, Tm³⁺, and Nd³⁺) in Tellurite Glasses. *C. R. Chimie* 5:921 - 938.
- Shen X., Nie Q., Xu T., Dai S., Wang X. (2008). Investigation on Energy Transfer from Er³⁺ to Nd³⁺ in Tellurite Glass. *Journal of Rare – Earths 26 (6)*: 899 – 903.
- Shiqing X., Dawei F., Zaixuan Z., Zhonghong J. (2005). Effect of OH⁻ on Upconversion Luminescence of Er³⁺ doped Oxyhalide Tellurite Glasses. *Journal of Solid State Chemistry* 178: 2159 – 2162.
- Shiqing X., Wang W., Deng D., Zhao S., Wang H., Ju H. (2008). Three color Upconversion Luminescence of Rare Earth codoped Oxyhalide Tellurite Glasses. *Journal of Rare Earths* 26(6): 895 – 898.
- Sidek H.A.A., Rosmawati S., Talib Z.A., Halimah M.K., Daud W.M. (2009). Synthesis and Optical Properties of ZnO – TeO₂ Glass System. American Journal of Applied Sciences 6(8): 1489 – 1494.
- Sidkey M.A., Gaafar M.S. (2004). Ultrasonic Studies on Network Structure of Ternary TeO₂ - WO₃ - K₂O Glass System. *Physica B* 348: 46 - 55.

- Sobczyk M. (2013). Temperature Dependent Luminescence and Temperature Stimulated NIR to Vis Upconversion in Nd³⁺ doped La₂O₃ Na₂O ZnO TeO₂ Glasses. *Journal of Quantitative Spectroscopy & Radiative Transfer*.
- Sulhadi (2007). Structural and Optical Properties Studies of Erbium doped Tellurite Glasses. PhD Thesis UTM.
- Sulhadi K., Sahar M.R., Rohani M.S. (2007). Spectroscopic Studies of TeO₂–ZnO Er₂O₃ Glass System. *Journal Material Sciences* 42: 824 – 827.
- Surendra S.B., Kiwan J., Eun J.C., Hoseop L., Jayasankar C.K. (2007). Thermal, Structural and Optical Properties of Eu³⁺ doped Zinc Tellurite Glasses. *Journal Physics D: Applied Physics 40*: 5767 – 5774.
- Surendra S.B., Rajeswari R., Kiwan J., Cho E.J., Kyoung H.J., Hyo J.S., Jayasankar C.K. (2010). Spectroscopic Investigation of 1.06 µm Emission in Er³⁺ doped Alkali Niobium Zinc Tellurite Glasses. *Journal of Luminescence 130*:1021 -1025.
- Tripathi G., Rai V.K., Rai A., Rai S.B. (2008). Energy Transfer between Er³⁺: Sm³⁺ codoped TeO₂ Li₂O Glass. *Spetrochimica Acta A* 71: 486 489.
- Vetrone F., Boyer J.C., Capobianco J.A., Speghini A., Bettinelli M. (2002). 980 nm Excited Upconversion in an Er – doped ZnO – TeO₂ Glass. *Appl. Phys. Lett.* 80(10): 1752 – 1754.
- Villegas M.A., Navarro J.M.F. (2007). Physical and Structural Properties of Glasses in the TeO₂ – TiO₂ – Nb₂O₅ System. *Journal of European Ceramic Society* 27: 2715 – 2723.
- Vineet K.R., Rai S.B., Rai D.K. (2006). Optical Studies of Dy³⁺ doped Tellurite Glass: Observation of Yellow – Green Upconversion. *Optics Communication* 257:112.

- Wang P., Wang C., Li W., Lu M., Peng B. (2013). Effects of Al₂O₃ on the Thermal Stability, Glass Configuration of Yb³⁺ doped TeO₂ – K₂O – ZnO – Al₂O₃ based Tellurite Laser Glasses. *Journal of Non- Crystalline Solids* 359:5 – 8.
- Wang Y., Dai S., Chen F., Xu T., Nie Q. (2009). Physical Properties and Optical Band Gap of New Tellurite Glasses within TeO₂ – Nb₂O₅ – Bi₂O₃ System. *Materials Chemistry & Physics 113*: 407 – 411.
- Wen L., Li S.G., Huang G.S., Hu L.L., Jiang Z.H. (2004). Optical Transitions and Upconversion Properties of Er³⁺ doped Chloride Tellurite Glasses. *Chin. Phys. Soc.* 13(2): 258 – 263.
- Xujie L., Wenjie Z. (2008). The Microscopic Interaction Parameters for Er³⁺/ Ho³⁺ Energy Transfer in Tellurite Glasses. *Physica B* 403: 2714 – 2718.
- Yangfeng Z., Chen B., Zhong H., Sun J., Cheng L., Li X., Zhang J., Tian Y., Lu W., Wan J., Yu T., Huang L., Yu H., Hai Lin (2011). Optical Transition, Excitation State Absorption and Energy Transfer Study of Er³⁺, Nd³⁺ Single doped and Er³⁺/ Nd³⁺ codoped Tellurite Glasses for Mid – Infrared Laser Applications. J. Am. Ceram. Soc. 94 (6): 1766 – 1772.
- Yousef E.S.S. (2005). Characterization of Oxyfluoride Tellurite Glasses through Thermal, Optical, and Ultrasonic Measurements. *Journal of Physics D: Applied Physics 38*: 3970 - 3975.
- Zachariasen W.H. (1932). The Atomic Arrangement in Glass Contribution from the Ryerson Physical Laboratory University of Chicago. *Journal Am. Chem. Soc.* 54 (10):3841 –3851.
- Zambelli M., Speghini A., Ingletto G., Locatelli C., Bettinelli M., Vetrone F., Boyer J.C., Capobianco J.A. (2004). Optical Spectroscopy of Lanthanide Ions in Al₂O₃ Nb₂O₅ TeO₂ Glasses. *Optical Materials* 25: 215 222.

- Zhang J., Tao H., Cheng Y., Zhao X. (2007). Structure, Upconversion and Fluorescence Properties of Er^{3+} doped TeO₂ TiO₂ La₂O₃ Tellurite Glass. *Journal of Rare Earths* 25: 108 – 112.
- Zhang J., Tao H., Cheng Y., Zhao X. (2007). Structure, Upconversion and Fluorescence Properties of Er^{3+} doped TeO₂ TiO₂ La₂O₃ Tellurite Glass. *Journal of Rare Earths* 25:108 – 112.
- Zhang N.N., Wang J.Y., Yao S.H., Hu X.B., Zhang H.J., Ayala A.P., Guedes I. (2011).Growth and Characterization of Congruent Lithium Isotope Niobate (⁷LiNbO₃) Single Crystal. *Journal of Crystal Growth* 318: 645 – 648.
- Zhe Jin, Qiuhua N., Tiefeng X., Shixun D., Xiang S., Xianghua Z. (2007). Optical Transition and Upconversion Luminescence of Er³⁺/ Yb³⁺ codoped Lead Zinc Tellurite Oxide Glass. *Materials Chemistry and Physics 104*: 62 – 67.
- Zheng S., Zhou Y., Yin D., Xu X., Qi Y., Peng S. (2013). The 1.53 μm Spectroscopic Properties and Thermal Stability in Er³⁺/Ce³⁺ codoped TeO₂ WO₃ Na₂O Nb₂O₅ Glasses. *Journal of Quantitative Spectroscopy & Radiative Transfer* 120: 44 51.
- Zhong H., Chen B., Ren G., Cheng L., Yao L. (2009). 2.7 μm Emission of Nd³⁺, Er³⁺ codoped Tellurite Glass. *Journal of Applied Physics 106*: 083114.