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ABSTRACT 

 

 

 

 

 In mathematics, the finite element method (FEM) is a numerical technique 

for finding approximate solutions of boundary value problems from differential 

equations. The term ‘finite element’ stems from the procedure in which a structure is 

divided into small but finite size elements. FEM is very useful for problems with 

complicated geometries, loadings, and material properties where analytical solutions 

cannot be obtained.  In this research, simple irregular problem is used as an example 

of industry problems to be solved using FEM and finite difference method (FDM). 

Matlab programming is used as a calculation medium for both FEM and FDM 

methods respectively. Since the results of the problem for both methods converge, it 

also proves that the results are valid. Hence we can conclude that simple irregular 

problem can be solved using FEM and FDM. From this research, we also discovered 

that FEM produces more stable and consistent result compared to FDM for the 

solution of simple irregular problem and the results are presented in graphs. 
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ABSTRAK 

 

 

 

 

 Dalam matematik, kaedah unsur terhingga adalah kaedah berangka bagi 

mencari penyelesaian anggaran untuk masalah nilai sempadan untuk persamaan 

pembezaan. Istilah 'Unsur terhingga' berpunca daripada prosedur di mana struktur 

yang dibahagikan kepada unsur-unsur bersaiz kecil tetapi terhingga. Kaedah unsur 

terhingga amat berguna untuk masalah berkaitan dengan geometri yang rumit, beban, 

dan sifat bahan di mana penyelesaian analisis tidak boleh diperolehi. Dalam kajian 

ini, masalah geometri tidak sekata untuk dua dimensi taburan haba dipilih sebagai 

satu contoh masalah industri yang perlu diselesaikan menggunakan kaedah unsur 

terhingga dan kaedah perbezaan terhingga. Pengaturcaraan Matlab digunakan 

sebagai medium pengiraan bagi kedua-dua kaedah tersebut. Disebabkan hasil yang 

didapati daripada pelaksanaan masalah geometri tidak sekata menggunakan kaedah 

unsur terhingga dan kaedah perbezaan terhingga menumpu , ia juga membuktikan 

bahawa hasil yang diperolehi adalah betul. Oleh itu, boleh disimpulkan bahawa 

masalah geometri tidak sekata boleh diselesaikan menggunakan kaedah unsur 

terhingga dan kaedah perbezaan terhingga  Melalui kajian ini, kaedah unsur 

terhingga didapati dapat menghasilkan jawapan yang lebih stabil dan konsisten jika 

dibandingkan dengan kaedah perbezaan terhingga dan semua hasil yang didapati 

dipersembahkan di dalam graf. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.0 Background of Study 

 

 

 The finite element method (FEM) is a computational or numerical technique 

which gives approximate solutions of boundary value problem arising normally in 

physics and engineering (Pepper and Heinrich, 1992). Chao and Chow (2002) stated 

that the fundamental idea of FEM is to discretise the domain into several 

subdomains, or finite elements. These elements can be irregular and possess different 

properties so that they form a basis to discretise complex structures, or structures 

with mixed material properties.  

 

 

 Further, they can accurately model the domain boundary regardless of its 

shape. Boundary value problems, sometimes called as field problems is a 

mathematical problem in which one or more dependent variables must satisfy 

specific conditions on the boundary of domain and satisfy a differential equation 

everywhere within a known domain independent variables. The examples of field 

variables are physical displacement, temperature, heat flux and fluid velocity 

depending on the type of physical problem being analysed. FEM cuts a structure into 

several elements (pieces of the structure) then reconnects elements at “nodes” as if 

nodes were pins or drops of glue that hold elements together. This process results in 
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a set of simultaneous algebraic equations. According to Hutton (2004), the term 

finite element was first coined by Clough in 1960. In the early 1960s, and engineers 

used the method for approximate solutions of problems in stress analysis, fluid flow, 

heat transfer, and other areas. 

 

 

 Apart from FEM, Finite difference method (FDM) is a common numerical 

method for the solution of partial differential equations (PDEs) and ordinary 

differential equation (ODEs). FDM involves discretization of the spatial domain, the 

differential equation, and boundary conditions, and a subsequent solution of a large 

system of linear equations for the approximate solution values in the nodes of the 

numerical mesh. 

 

  

 In FDM one starts with the differential formulation and by a process of 

discretization transforms the problem into a system of interlinked simultaneous 

algebraic equations that then must be solved in order to determine an approximation 

to the desired solution. Discretization consists of first introducing a mesh of nodes by 

subdividing the solution domain into a finite number of sub domains and then 

approximating the derivatives in the boundary value problem by means of 

appropriate finite difference ratios which can be obtained from a truncated Taylor 

series expansion. As a result, system of interlinked simultaneous algebraic equations 

is obtained that then must be solved in order to determine an approximation to the 

desired solution (Reimer and Cheviakov, 2012).  

 

 

 For comparing the two methods, FEM actually models the differential 

equations and uses numerical integration to get the solution at discrete points while 

the FDM models the differential equation using finite difference formulas derive 

from truncated Taylor series expansion. 

 

 

 

 

1.1 Problem Statement 

 

 



3 
 

 A numerical method is a technique for obtaining approximate solutions of 

many types of engineering problems. The need for numerical methods arises from 

the fact that for most practical engineering problems their analytical solutions do not 

exist. While the governing equations and boundary conditions can usually be written 

for these problems, difficulties introduced by either irregular geometry or other 

discontinuities are difficult to be solved analytically. FEM and FDM are the 

examples of numerical methods that can be used to solve this kind of problems. 

Though FDM is easier to compute as well as to code, some problems that involved 

complex geometry is either difficult or completely cannot be solved by FDM. 

Generally FDM is a simple method to use for common problems defined on regular 

geometries, such as an interval in one dimension (1D), a rectangular domain in two 

dimensions (2D), and a cubic in three dimensions (3D). Meanwhile FEM is a 

complex method but it can be used to solve complex geometry problems. That is why 

FEM is essential for industrial problem computational purposes. Hence for this 

research, our aim is to solve 2D simple irregular geometry heat distribution problems 

using FEM and FDM and compare the result for both methods. 

 

 

 

 

1.2 Objectives of Study 

 

 

The objectives of this study are: 

 

 

(I) To implement FEM and FDM for heat distribution problems. 

(II) To develop the coding for 2D regular geometry heat distribution problem 

using FEM and 2D simple irregular geometry heat distribution problem using 

FEM and FDM in Matlab programming. 

(III) To compare the results of FEM and FDM on 2D simple irregular geometry 

heat distribution problems. 
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1.3  Scope of Study 

 

 

 This study will emphasize on the fundamental theory of FEM and FDM and 

its application towards the solution for heat distribution problems especially for 

irregular geometry case and the implementation through Matlab. The Matlab coding 

is developed based on Laplace equation for irregular geometries using FDM whereas 

Galerkin method is used for solution related to FEM. The solution for FDM and 

FEM approaches ultimately end up with having system of linear equations. System 

of linear equation can be solved using many methods such as Gauss elimination 

method, LU decomposition method, QR decomposition method and Jacobi method. 

However, in this research we used Jacobi method since the method is an iterative 

method that first generates inexact results and subsequently refines its results at each 

iteration, with the residuals converging at an exponential rate giving values that are 

correct to specified accuracy (Fraser, 2008). 

 

 

 

 

1.4 Significance of Study 

 

 

 This research benefits the student which gives them a better understanding 

about the application of FDM and FEM in preparing them to solve the real world of 

engineering problems. Other than that, this study will help engineers to solve many 

industrial practical problems particularly involved complicated domains.  For 

instance, in a frontal crash simulation it is possible to increase prediction accuracy in 

important areas like the front of the car and reduce it in its rear (thus reducing cost of 

the simulation). This application can be extended to soil mechanics, heat transfer, 

fluid flow, magnetic field calculations, and other areas. The introduction of the 

digital computer has made possible the solution of the large-order systems of 

equations. 
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1.5 Organization of Research 

  

  

 There are five chapters in this research. In Chapter 1, we will discuss about 

the introduction of this research, problem statement, objective, scope and 

significance of the research. Next, we will present the literature review regarding 

FDM and FEM in Chapter 2. After that, we will introduce the mathematical 

formulation of the problem and explain theoretically the steps for the solution of the 

problems using FDM and FEM in Chapter 3. Then, in chapter 4 we will present the 

numerical results for FDM and FEM obtained from Matlab and discuss the results. 

Finally, in Chapter 5, we conclude our research and present some suggestions for 

future research. 
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