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ABSTRACT 

 

 

 

 

LiFePO4 and vanadium doped LiFePO4 were successfully prepared by sol- gel 

method. The concentrations of vanadium were varied by 0.01, 0.03, 0.05, 0.10, 0.15, 

and 0.2 wt %. Both doped and pure LiFePO4 were calcined at 400 and 600°C. XRD 

results showed that by changing the dopant concentration and calcination 

temperature, the crystallinity changed. As the concentration of dopant increased the 

size of crystallite size become larger. The peaks pattern shows orthorhombic structure 

for LiVFePO4 upon incorporation of vanadium, and changed to hematite at low 

calcination temperature. As the calcination temperature increase the size of particle 

become larger while smaller particle were obtained at low temperature. FESEM 

analysis showed that at low temperature, smaller particles tend to agglomerate. 

Agglomeration of several grains produced larger particles which might be due 

aggregation of very small crystal grains during calcinations. Upon addition of 

vanadium to LiFePO4, larger particles size was obtained. Similar ionic radius of 

vanadium with iron may cause the expansion of crystal lattice, resulting in larger 

particle size. EDX analysis confirmed the existence of each element in the samples 

except for Li which cannot be detected as the atomic number is less than five. In 

charge/discharge electrochemical test, the obtained discharge capacities were far from 

the theoretical value and not suitable for commercialization of lithium ion batteries. 

Poor performance of the prepared samples may be due to the formation of solid 

electrolyte interface layer and cracking causes the loss of lithium and active materials 

from the sample. 
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ABSTRAK 

 

 

 

 

Penyediaan LiFePO4 dan LiFePO4 didopkan vanadium telah dilakukan 

melalui kaedah sol-gel. Kepekatan vanadium yang didopkan mengikut peratusan 

berat  bermula daripada 0.01, 0.03, 0.05, 0.10, 0.15, dan 0.2. Kedua-dua LiFePO4 

tulen dan LiFePO4 terdop telah dikalsinkan pada suhu 400 dan 600°C. Keputusan 

XRD menunjukkan kehabluran berubah apabila kepekatan dop dan suhu 

pengkalsinan diubah. Apabila kepekatan pendopan bertambah, saiz hablur akan 

menjadi lebih besar. Corak puncak pembelauan sinar - X menunjukkan struktur 

otorombik setelah LiFePO4 bergabung dengan vanadium, dan berubah kepada 

hematit pada suhu pengkalsinan rendah. Apabila suhu pengkalsinan meningkat, saiz 

zarah menjadi besar manakala saiz zarah menjadi lebih kecil pada suhu rendah. 

Analisis FESEM menunjukkan pada suhu yang rendah, zarah yang lebih kecil 

cenderung untuk menggumpal. Penggumpalan beberapa zarah menghasilkan zarah 

yang lebih besar mungkin disebabkan oleh pengumpulan partikel kristal semasa 

pengkalsinan. Apabila kepekatan vanadium kepada LiFePO4 bertambah, saiz zarah 

yang lebih besar akan diperoleh. Saiz jejari ion vanadium yang hampir sama dengan 

ion besi  menyebabkan pengembangan kekisi kristal sehingga menghasilkan saiz 

zarah yang lebih besar. Analisis EDX mengesahkan kewujudan setiap unsur dalam 

sampel kecuali Li yang tidak boleh dikesan kerana nombor atom kurang daripada 

lima. Dalam ujian elektrokimia cas/nyahcas, kapasiti nyahcas yang diperoleh jauh 

berbeza daripada nilai teori dan tidak sesuai untuk dikomersialkan sebagai bateri ion 

litium. Keberkesanan sampel yang lemah mungkin disebabkan oleh pembentukan 

lapisan elektrolit pepejal dan keretakan yang menyebabkan kehilangan litium dan 

bahan aktif daripada sampel.  
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CHAPTER I 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Research 

 

 

Rechargeable lithium ion batteries have been considered as an attractive 

power source for a wide variety of applications, such as cellular phones, notebook 

computers, camcorders and hybrid electric vehicles (HEV) due to the high energy 

density, high working potential and long life (Mi et al., 2007). In various aspects, this 

kind of lithium secondary battery has many advantages over the traditional 

rechargeable systems like lead acid and Ni-Cd, for example, a high energy density, a 

high average output voltage (3.6 or 3.7 V), a low self-discharge (<5 % per month), 

no memory effect like that of Ni-Cd and Ni-MH, an excellent cycling behaviour (its 

cycle number can be >1200), a high rate capability like 1C, a high coulomb 

efficiency (near to 100 % except in the first cycle), a wide work temperature range 

(ranging from -25 to +45°C, expected to be +70°C), an easy measurement of the 

residual capacity, maintenance free and very few adverse effects on the environment 

(it can be called a green battery) (Takahashi et al., 2005). As a result, its 

development has been very rapid, and now it has been widely applied in a lot of light 

electronics with high value, e.g., portable telephones and computers, digital cameras 

and videos (Fu et al., 2005). The cathode is particularly critical in determining the 

capacity of the lithium battery, as it is the heaviest component, and has the greatest 
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potential for improvement (Yang et .al., 2003). In the lithium-ion battery, lithium 

ions shuttle between cathode and anode hosts via intercalation and de-intercalation. 

The cathode host provides lithium ion sources for battery operation (Wang et al., 

2006). The common cathode materials are oxide and phosphate based. 

 

 

 Several types of cathode materials have been introduced for lithium-ion 

batteries, such as LiCoO, LiNiO2, LiMn2O4, LiNi1/3Co1/3Mn1/3O2, and LiFePO4 

(Fergus 2010) . Among the cathode materials, LiFePO4 has been recognized as one 

of the most promising cathode materials for large format lithium batteries because of 

its high theoretical capacity of 170 mA h g
−1

, environmental benign, and high 

thermal stability since the report done by researcher was published in 1997 

(Nanjundaswamy et al., 1996). The three-dimensional framework structure of 

LiFePO4 is not built on close packing of oxygen anions, but built on PO4 
3−

 

polyanions and octahedral MO6 groups (M = Fe, Li) that make the cells comprised 

with this material manifest higher thermal stability than others (Wu et al., 2009). 

 

 

However, it is known that the high-rate performances of pure LiFePO4 are 

rather poor due to the low intrinsic electrical conductivity (Nanjundaswamy et al., 

1996; Fu et al., 2005; Zhang 2011) and the sluggish Li
+
 diffusion in the bulk of the 

materials (Sun et al., 2010). The low conductivity of LiFePO4 is because it has only 

one oxidation state of +2 or +3. The development of the nanostructure materials have 

become of great interest to replace the micron-sized materials (Rui et al., 2011). 

These nanostructured materials have high possibility for high power operation. This 

is due to their function in controlling the charge/discharge process which is attributed 

by the rate of lithium ion transport across the electrode-electrolyte interface. It is 

advantageous in terms of fast ions conduction and electron transport over shorter 

distance. Therefore, more active materials will be utilized to give higher capacity for 

the batteries. 

 

 

LiFePO4 powders can be prepared by both solid state and solution based 

methods. Solid state techniques are carried out at high temperatures without any 

solvent addition. On the other hand, solution based methods are based on reactions 

that take place with the presence of appropriate solvent systems. Solid state 
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synthesis, mechanochemical activation, carbothermal reduction and microwave 

heating are based on solid state chemistry and are the most common solid state 

methods for preparing LiFePO4 powders. Solution based methods are of increasing 

importance since they often result in smaller and more uniform particle size, higher 

purity, more homogeneous carbon coating, and higher electrochemical capacity. 

Hydrothermal synthesis, sol-gel synthesis, spray pyrolysis, coprecipitation, and 

microemulsion drying are common solution based methods used for the preparation 

of LiFePO4 powders. 

 

 

In recent years, the development of LiFePO4 nanostructure cathode materials 

with improved electrochemical properties increase rapidly (Li et al., 2007; Chang et 

al., 2009). Based on their studies, this is because the capacity of the electrode 

material is significantly affected by the morphology of the materials. The 

morphology of the materials can influence the diffusion of mechanism of lithium 

ions as well as electrons transport throughout the material. 

 

 

 

 

1.2 Statement of Problems 

 

 

 More recently, LiFePO4 has become one of the most promising compounds to 

replace the cathode candidates such as LiCoO2, LiMn2O4  and LiNiO2 due to the 

relative lack of toxicity and inexpensive and abundant raw materials (Zhang et al., 

2012). However, there are major drawbacks for the use of LiFePO4 as a commercial 

cathode material which is its poor electronic conductivity resulting from the low 

lithium ion diffusion rate and the low tap density (1.0 - 1.3 g cm
-3

) which results in a 

low volumetric specific capacity of the material (Chang et al., 2010). There are a lot 

of approaches have been attempted to overcome these problems either by coating 

with carbon or metal powders, nanostructure designs, optimizing preparation 

procedure, or doping. Carbon or metal powder coating and doping were introduced 

to overcome the conductivity problem LiFePO4. This is because carbon can control 

the particle growth and provides better electronic contact between particles. A thin 

carbon layer can provide a path for electrons without blocking access for lithium 
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ions. However, these approaches still could not fully improve the intrinsic 

conductivity of LiFePO4 because the diffusion coefficient of electrons does not 

influence the ionic conductivity (Liu et al., 2008). Optimization of the synthesis 

routes and parameters need to be explored by researcher to obtain the most suitable 

conditions for synthesizing the high performance LiFePO4. 

 

  

 

 

1.3 Research Objective 

 

 

Therefore, the research embarks on the following objectives: 

 

 

i. To synthesize vanadium doped for lithium iron phosphate by sol gel 

method. 

ii. To determine the structural properties characterizations in terms of 

structure and morphology. 

iii. To study the electrochemical performance of prepared samples using 

charge-discharge test. 

 

 

 

 

1.4 Scope of Study 

 

 

 In this work, the sol-gel method is selected to synthesize vanadium doping 

LiFePO4 for lithium ion batteries. The parameters involve are calcination 

temperature and dopant concentration. The LiFePO4 sample undergoes heat 

treatment reaction at 400
o
C and 600

o
C for 4 hours before being optimized. The X-ray 

diffractometer (XRD), field emission scanning electron microscopy (FESEM) with 

Energy-dispersive X-ray spectroscopy (EDX) and The Brunaure, Emmett, and Teller 

(BET) will be used to identify the structure, morphology and surface area of the 

samples. Besides, the electrochemical characterization will be carried out by means 

of charge discharge test between 2.5 and 4.5V. 
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1.5 Significance of Study 

 

 

A good cathode material for lithium ion batteries should have large capacity, 

good cycling performance, high stability, low toxicity, and high purity, and it should 

be easily produced and affordable. In order to obtain these features, small particle 

size, narrow size distribution, uniform morphology, optimum crystallinity degree, 

high specific surface area, minimum defects and agglomeration, and homogeneous 

carbon coating or metal doping are required for the practical application of LiFePO4 

powders in lithium ion batteries. Sol-gel method is more advantageous over solid 

state to produce higher purity and homogeneity materials. It also formation of porous 

structure which favourable for electrolyte immersion and reduces the diffusion 

distance for lithium ions (Fu et al., 2005). The vanadium doping was selected due to 

stability at high temperature and in organic solvents. By adding the vanadium, Fe site 

will be replaced and the electrochemical performances suggested to be greatly 

improved (Hua et al., 2010). Once the results obtained shows the positive improve 

regarding to the physical and electrochemical properties, the vanadium doped 

LiFePO4 can be a promising candidate for cathode materials. 
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