

SOFTWARE-BASED SELF-TESTING FOR A RISC PROCESSOR

TEH WEE MENG

UNIVERSITI TEKNOLOGI MALAYSIA

SOFTWARE-BASED SELF-TESTING FOR A RISC PROCESSOR

TEH WEE MENG

A project submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Electrical - Computer and Microelectronic System)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

JUNE 2014

iii

Specially dedicated to my family, lecturers and friends who have guided, motivated

and inspired me throughout my journey of education

iv

ACKNOWLEDGEMENT

 Firstly, I would like to thank my project supervisor Dr. Ooi Chia Yee for all

her guidance and advices throughout the duration of this project. This project would

not have been a successful one without her.

 I also wish to express my gratitude to the authors of all technical papers listed

in the references section that I have been referring to, which have provided me with

all the necessary knowledge and concepts in completing this project.

 Special thanks to all friends and anyone who have helped me in one way or

another during this project. Thanks to my family also for all the supports given to me

throughout the years of my studies.

v

ABSTRACT

 Software-based self-testing (SBST) has been touted as the effective way to

test the processors effectively, with reasonable test coverage, plus the advantages of

at-speed testing, and without performance degradation in terms of area and power.

Previous work has been done on combining SBST with partial scan logic insertion at

Register Transfer Language (RTL) level for a 16-bit RISC processor design. In this

project, focus will be done on test coverage improvement without the use of scan

logic.

vi

ABSTRAK

 Perisian ujian sendiri (SBST) telah disebut-sebut sebagai cara yang berkesan

untuk menguji unit pemprosesan pusat (CPU), dengan liputan ujian yang munasabah,

pelbagai manfaat seperti ujian-sama-kelajuan, tiada kesan negatif ke atas prestasi

dari segi pembaziran keluasan and tenaga. Kerja sebelumnya telah dilakukan ke atas

menggabungkan SBST dengan penggunaan separa logik imbasan di dalam RTL

untuk sejenis 16-bit RISC CPU. Dalam projek ini, tumpuan diberikan terhadap

peningkatan liputan ujian tanpa menggunakan logik imbasan.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES ix

 LIST OF FIGURES x

 LIST OF ABBREVIATIONS xi

 LIST OF APPENDICES xii

1 INTRODUCTION 1

 1.1 Background 1

 1.2 Objective 4

 1.3 Scope 4

 1.4 Problem Statement 5

 1.5 Research Methodology 5

 1.6 Thesis outline 6

2 LITERATURE REVIEW 7

2.1 Automatic Test Equipment (ATE) 7

 2.2 Built-In Self-Test (BIST) 8

 2.3 Software-Based Self-Testing (SBST) 9

 2.4 RiSC-16 11

viii

3 METHODOLOGY AND IMPLEMENTATION 16

 3.1 RTL simulation 17

 3.2 Synthesis 20

 3.3 ATPG 21

 3.4 Building the constrained circuit 22

 3.5 Full scan design 25

4 RESULTS AND DISCUSSION 26

 4.1 Results 26

5 CONCLUSION AND RECOMMENDATIONS 29

REFERENCES 31

Appendices A – D 33 - 45

ix

LIST OF TABLES

TABLE NO. TITLE PAGE

1.1 Comparison between CISC and RISC processor 2

2.1 Detailed operations of all 8 instructions 14

3.1 Testbench used and expected/output value 18

 of specific registers

4.1 Results from previous work 25

4.2 Summary of all ATPG results 26

x

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 A typical RISC processor design 3

1.2 Flow chart of research methodology 6

2.1 Software-based self-testing concept 9

2.2 Self-test concept 10

2.3 RiSC-16 5 stage pipeline 12

2.4 3 types of instruction format of RiSC-16 13

2.5 The 8 instructions of RiSC-16 14

3.1 Implementation flow chart 16

3.2 RiSC-16 without data and instruction memory 17

3.3 RTL simulation waveform of RiSC-16 on Quartus II 18

3.4 Derivation of instruction in HEX and output 19

 register value

3.5 Loading up dc_shell-t 20

3.6 Loading up Tetramax 21

3.7 Extracting input constraints 23

3.8 Extracting output constraints 23

3.9 RTL simulation waveform of the constrained circuit 25

 on Quartus II

xi

LIST OF ABBREVIATIONS

SBST - Software-Based Self-Testing

RISC - Reduced Instruction Set Computer

CPU - Central Processing Unit

CISC - Complex Instruction Set Computer

I/O - Input/Output

ROM - Read Only Memory

ISA - Instruction Set Architecture

IP - Intellectual Properties

ALU - Arithmetic Logic Unit

RTL - Register Transfer Language

ATPG - Automatic Test Pattern Generation

DC - Design Compiler

STIL - Standard Test Interface Language

ATE - Automatic Test Equipment

BIST - Built-In Self-Test

IC - Integrated Circuit

SOC - System On Chip

CU - Control Unit

xii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Verilog codes for CTL1 to CTL7 32

B Verilog codes for RiSC-16 35

C A testbench file 43

D The input and output constraint circuits 44

CHAPTER 1

INTRODUCTION

 This project is about implementing the technique of Software-Based Self-

Testing (SBST) on a Reduced Instruction Set Computer (RISC) processor.

Effectiveness of this testing method will be judged on the achieved test coverage,

test program size and testing cycle count. Comparison with previous work that

combines SBST and partial scan insertion technique would be done. This chapter

gives a brief introduction of project background, objective, scope, implementation

plan and problem statement, as well as the organization of this thesis.

1.1 Background

In this electronic age of 21
st
 century, processors, also known as Central

Processing Unit (CPU), are the heart of almost all smart electronics devices,

especially the ubiquitous smartphones and tablets. The word “smart” stemmed from

the fact that processors are continuously making all the smart decisions in terms of

the controls and instruction executions in a complex system.

 RISC stands for Reduced Instruction Set Computer. This is a CPU design

strategy hinged on the concept that simplified instructions can provide higher

performance, with faster execution of each instruction. The term "reduced" pinpoints

the fact that the amount of time required by any single instruction to accomplish its

task is reduced - at most a single data memory cycle. On the other hand, "complex

instructions" executed by CISC (Complex Instruction Set Computer) CPUs may

2

require dozens of data memory cycles in order to execute a single instruction. A

quick comparison between RISC and CISC is shown in Table 1.1. In particular,

RISC processors typically have separate instructions for I/O and data processing.

Table 1.1 : Comparison between CISC and RISC processor

Design Feature CISC Processor RISC Processor

Instruction

length

Variable length Fixed length

Addressing

modes

Many Few

Clock cycles Complex instructions, each

instruction requires many

clock cycles to execute

Simple instructions,

typically 1 clock cycle for

each instruction

Memory access Support memory-to-memory

instructions

Only load & store

instructions have access to

memory

Registers Small numbers of general

purpose registers

A large register file, to be

used for any purpose

(prevents large interactions

with memory)

Control Unit Use large microcoded ROM Hardwired

Pipelining Lousy pipelining Pipelined datapath

 RISC processors usage ranges from cellular phones, tablets to

supercomputers. Examples include ARM architecture, MIPS line, Hitachi’s SuperH,

Atmel AVR, SPARC by Oracle, IBM’s Power Architecture, Hewlett-Packard’s PA-

3

RISC, Alpha and so on. As shown in Figure 1.1, RISC designs normally adopt

Harvard architecture, whereby instruction and data memories are separate modules.

Figure 1.1 : A typical RISC processor design

Basic building blocks of a typical RISC processor include:

• Instruction Set Architecture (ISA) registers.

• Fundamental IPs such as:

• ALU – implementation of data processing instructions with

arithmetic (add, subtract & multiply) and logical operations.

• Memory access unit – manipulation of both data and instruction

memory addresses.

• Control/steering logic/pipeline registers.

• Control Unit – a module that extracts instructions from memory,

decodes and executes them, calling on the ALU when necessary.

• Pipeline registers – registers that store address of current executed

instruction, handles interrupt and backup return address.

• Pipeline-related control logic.

Generally, RISC processor’s instruction can be divided into four categories of:

4

(a) CPU control – instructions such as NOP, STOP, SET and CLR which do

not generate numeric results but alter processor’s state. SET and CLR

allow the set and clear operation of any status or control registers.

(b) Data transfer – instructions of MOV, LOAD and PUSH that copy the

content of an internal register to another register, a memory location, or

load the data from these sources to register file.

(c) Branch and subroutine – instructions like JMP and BRC that alter the

value of program counter and access the call stack.

(d) Arithmetic and Logic – instructions of ADD, NEG, XOR that generate

numeric results as a function of two source operands.

1.2 Objective

The main objective of this project is to understand the design of a 16-bit

RISC processor from previous work, and apply SBST methodology that generates

the constrained test patterns to test the processor effectively.

1.3 Scope

The scope in this project involves understanding the Verilog design of a

RISC processor (reused from previous student’s project), verifying the functionality

of the RISC processor through RTL simulation, synthesizing the Verilog codes into

gate level netlist, generating test patterns for the processor with a set of constraints,

and performing test coverage analysis.

The three main tools that are used during development of this project are

summarized as below:

 Quartus II (version 11.0) is used for Verilog coding

analysis/modifications and RTL simulation.

5

 Design Compiler (DC) is used for synthesis of a RTL into its gate-level

netlist.

 Tetramax is the Automatic Test Pattern Generation (ATPG) tool used for

test pattern generation and test coverage analysis.

1.4 Problem Statement

The previous work [1] that combines SBST technique and partial scan

insertion technique has the limitations of test time generation and area overhead.

This project is to eliminate area overhead incurred from the partial scan technique

while retaining the reasonable test coverage.

1.5 Research Methodology

As indicated in Figure 1.2, this project shall start with formulating remaining

problem of previous SBST related work. Literature study on the RISC processor

design and SBST methodology follows, which would require understanding of

Verilog codes and getting familiarized with the use of synthesis and ATPG tools.

Experiments start as soon as project approach is finalized, and project will end with

thesis writing.

6

Formulating remaining problem of previous

SBST related work

Literature study on RISC processor's architecture and SBST

methodology

Finalizing project approach on SBST

technique

Conducting experiments

Writing thesis

Figure 1.2 : Flow chart of research methodology

1.6 Thesis Outline

 This thesis is separated into five chapters. It starts with introduction in

Chapter 1, which covers the project background, objective, scope and problem

statement. This is followed by Chapter 2, which comprises the literature review of

various processors’ testing methods and the architecture of the RISC processor used

for the project. Chapter 3 outlines the methodology and implementation in this

project. Chapter 4 summarizes all the ATPG results and discussion. Chapter 5 gives

the conclusion and recommendations for future work of this project.

31

REFERENCES

1. Ang Kim Chuan, “Software-Based Self-Test with Scan Design at Register

Transfer Level for 16-bit RISC Processor”, Master Thesis of Universiti

Teknologi Malaysia, Skudai, 2010.

2. Nektarios Kranitis, Antonis Paschalis, Dimitris Gizopoulos, and George Xenoulis,

“Software-Based Self-Testing of Embedded Processors”, IEEE Trans. Comput.,

vol. 54, no. 4, pp. 461-475, Apr. 2005.

3. L. Chen and S. Dey, “Software-Based Self-Testing Methodology for Processor

Cores”, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 20, no. 3,

pp. 369-380, Mar. 2001.

4. A. Krstic, L. Chen, W.C. Lai, K.T. Cheng, and S. Dey, “Embedded Software-

Based Self-Test for Programmable Core-Based Designs”, IEEE Design and Test

of Computers, pp. 18-26, July/Aug. 2002.

5. Chung-Ho Chen, Chih-Kai Wei, Tai-Hua Lu, and Hsun-Wei Gao, “Software-

Based Self-Testing With Multiple-Level Abstractions for Soft Processor Cores”,

IEEE Trans. VLSI Syst., vol. 15, no. 5, May 2007.

6. Prof. Bruce Jacob, “The RiSC-16 Instruction Set Architecture”, Fall 2000.

7. Psarakis, M., Gizopoulos, D., Sanchez, E., and Reorda, M.S., “Microprocessor

Software-Based Self-Testing”, IEEE Design and Test of Computers, pp. 4-19,

May-June 2010.

8. Anuruddh Sharma and Mukti Awad, “A 16-bit RISC Processor For Computer

Hardware Introduction”, IRACST – Engineering Science and Technology: An

International Journal (ESTIJ), ISSN: 2250-3498, vol. 2, no. 3, Jun. 2012.

32

9. L. Chen, S. Ravi, A. Raghunathan, and S. Dey, “A scalable software-based self-

test methodology for programmable processors,” in Proc. 17th Design Autom.

Conf., pp. 548–553, 2003.

