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ABSTRACT 

 

 

 

 

 Software-based self-testing (SBST) has been touted as the effective way to 

test the processors effectively, with reasonable test coverage, plus the advantages of 

at-speed testing, and without performance degradation in terms of area and power. 

Previous work has been done on combining SBST with partial scan logic insertion at 

Register Transfer Language (RTL) level for a 16-bit RISC processor design. In this 

project, focus will be done on test coverage improvement without the use of scan 

logic. 
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ABSTRAK 

 

 

 

 

 Perisian ujian sendiri (SBST) telah disebut-sebut sebagai cara yang berkesan 

untuk menguji unit pemprosesan pusat (CPU), dengan liputan ujian yang munasabah, 

pelbagai manfaat seperti ujian-sama-kelajuan, tiada kesan negatif ke atas prestasi 

dari segi pembaziran keluasan and tenaga. Kerja sebelumnya telah dilakukan ke atas 

menggabungkan SBST dengan penggunaan separa logik imbasan di dalam RTL 

untuk sejenis 16-bit RISC CPU. Dalam projek ini, tumpuan diberikan terhadap 

peningkatan liputan ujian tanpa menggunakan logik imbasan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

 This project is about implementing the technique of Software-Based Self-

Testing (SBST) on a Reduced Instruction Set Computer (RISC) processor. 

Effectiveness of this testing method will be judged on the achieved test coverage, 

test program size and testing cycle count. Comparison with previous work that 

combines SBST and partial scan insertion technique would be done. This chapter 

gives a brief introduction of project background, objective, scope, implementation 

plan and problem statement, as well as the organization of this thesis. 

 

 

 

 

1.1 Background 

 

 

In this electronic age of 21
st
 century, processors, also known as Central 

Processing Unit (CPU), are the heart of almost all smart electronics devices, 

especially the ubiquitous smartphones and tablets. The word “smart” stemmed from 

the fact that processors are continuously making all the smart decisions in terms of 

the controls and instruction executions in a complex system. 

 

 

 RISC stands for Reduced Instruction Set Computer. This is a CPU design 

strategy hinged on the concept that simplified instructions can provide higher 

performance, with faster execution of each instruction. The term "reduced" pinpoints 

the fact that the amount of time required by any single instruction to accomplish its 

task is reduced - at most a single data memory cycle. On the other hand, "complex 

instructions" executed by CISC (Complex Instruction Set Computer) CPUs may 
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require dozens of data memory cycles in order to execute a single instruction. A 

quick comparison between RISC and CISC is shown in Table 1.1. In particular, 

RISC processors typically have separate instructions for I/O and data processing. 

 

 

Table 1.1 : Comparison between CISC and RISC processor 

Design Feature CISC Processor RISC Processor 

Instruction 

length 

Variable length Fixed length 

Addressing 

modes 

Many Few 

Clock cycles Complex instructions, each 

instruction requires many 

clock cycles to execute 

Simple instructions, 

typically 1 clock cycle for 

each instruction 

Memory access Support memory-to-memory 

instructions 

Only load & store 

instructions have access to 

memory 

Registers Small numbers of general 

purpose registers 

A large register file, to be 

used for any purpose 

(prevents large interactions 

with memory) 

Control Unit Use large microcoded ROM Hardwired 

Pipelining Lousy pipelining Pipelined datapath 

  

 

 RISC processors usage ranges from cellular phones, tablets to 

supercomputers. Examples include ARM architecture, MIPS line, Hitachi’s SuperH, 

Atmel AVR, SPARC by Oracle, IBM’s Power Architecture, Hewlett-Packard’s PA-
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RISC, Alpha and so on. As shown in Figure 1.1, RISC designs normally adopt 

Harvard architecture, whereby instruction and data memories are separate modules.  

 

 

Figure 1.1 : A typical RISC processor design 

 

 

Basic building blocks of a typical RISC processor include: 

• Instruction Set Architecture (ISA) registers. 

• Fundamental IPs such as: 

• ALU – implementation of data processing instructions with 

arithmetic (add, subtract & multiply) and logical operations.  

• Memory access unit – manipulation of both data and instruction 

memory addresses. 

• Control/steering logic/pipeline registers. 

• Control Unit – a module that extracts instructions from memory, 

decodes and executes them, calling on the ALU when necessary. 

• Pipeline registers – registers that store address of current executed 

instruction, handles interrupt and backup return address. 

• Pipeline-related control logic. 

Generally, RISC processor’s instruction can be divided into four categories of: 
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(a) CPU control – instructions such as NOP, STOP, SET and CLR which do 

not generate numeric results but alter processor’s state. SET and CLR 

allow the set and clear operation of any status or control registers. 

(b) Data transfer – instructions of MOV, LOAD and PUSH that copy the 

content of an internal register to another register, a memory location, or 

load the data from these sources to register file. 

(c) Branch and subroutine – instructions like JMP and BRC that alter the 

value of program counter and access the call stack. 

(d) Arithmetic and Logic – instructions of ADD, NEG, XOR that generate 

numeric results as a function of two source operands. 

 

 

 

 

1.2 Objective 

 

 

The main objective of this project is to understand the design of a 16-bit 

RISC processor from previous work, and apply SBST methodology that generates 

the constrained test patterns to test the processor effectively. 

 

 

 

 

1.3 Scope 

 

 

The scope in this project involves understanding the Verilog design of a 

RISC processor (reused from previous student’s project), verifying the functionality 

of the RISC processor through RTL simulation, synthesizing the Verilog codes into 

gate level netlist, generating test patterns for the processor with a set of constraints, 

and performing test coverage analysis. 

 

 

The three main tools that are used during development of this project are 

summarized as below: 

 Quartus II (version 11.0) is used for Verilog coding 

analysis/modifications and RTL simulation.  
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 Design Compiler (DC) is used for synthesis of a RTL into its gate-level 

netlist. 

 Tetramax is the Automatic Test Pattern Generation (ATPG) tool used for 

test pattern generation and test coverage analysis. 

 

 

 

 

1.4 Problem Statement 

 

 

The previous work [1] that combines SBST technique and partial scan 

insertion technique has the limitations of test time generation and area overhead. 

This project is to eliminate area overhead incurred from the partial scan technique 

while retaining the reasonable test coverage. 

 

 

 

 

1.5 Research Methodology  

 

 

As indicated in Figure 1.2, this project shall start with formulating remaining 

problem of previous SBST related work. Literature study on the RISC processor 

design and SBST methodology follows, which would require understanding of 

Verilog codes and getting familiarized with the use of synthesis and ATPG tools. 

Experiments start as soon as project approach is finalized, and project will end with 

thesis writing. 
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Formulating remaining problem of previous 

SBST related work

Literature study on RISC processor's architecture and SBST 

methodology

Finalizing project approach on SBST 

technique

Conducting experiments

Writing thesis

 
 

 

Figure 1.2 : Flow chart of research methodology 

 

 

 

 

1.6 Thesis Outline 

 

 

 This thesis is separated into five chapters. It starts with introduction in 

Chapter 1, which covers the project background, objective, scope and problem 

statement. This is followed by Chapter 2, which comprises the literature review of 

various processors’ testing methods and the architecture of the RISC processor used 

for the project. Chapter 3 outlines the methodology and implementation in this 

project. Chapter 4 summarizes all the ATPG results and discussion. Chapter 5 gives 

the conclusion and recommendations for future work of this project. 
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