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ABSTRACT

The Flexible Actuator (FA) is a type of pneumatic or hydraulic actuator that 

can bend, stretch, and twist in any direction by controlling the pressure in chambers 

of the actuator. This project aims to design and compare the thickness of several 

possible two chambers of soft actuators. The soft actuator is composed of two semi­

circular chambers and reinforced with fiber from P1-silastic silicon RTV material. 

The best actuators among these designs will be used to simulate the two actuators. 

The two actuators will be constructed by connecting two links of actuators in parallel 

with a thin membrane between links. Finite Element Method (FEM) software -  

MARC will be used, in which geometrical and material non-linearity are considered, 

to validate the simulation result. Using MARC, three types of two chambers 

actuators design will be compared to select the best actuator with biggest bending 

angle. Next, two links of these actuators will be simulated.



ABSTRAK

Penggerak Fleksibel Aktuator (FA) adalah sejenis penggerak pneumatik dan 

hidraulik yang boleh dibengkok, diregangan, dan diputar dalam apa-apa jua araha 

dengan mengawal tekanan di dalam ruang penggerak. Projek ini adalah bertujuan 

untuk mereka bentuk dan membandingkan ketebalan beberapa jenis dua ruang 

penggerak lembut. Satu penggerak lembut tunggal adalah terdiri daripada dua ruang 

separuh bulatan dan diperkukuh dengan gentian dari P1-silastic bahan silikon RTV. 

Penggerak yang terbaik daripada reka bentuk ini akan digunakan untuk 

disimulasikan kedua-dua penggerak. Kedua-dua penggerak ini akan dibina dengan 

menyambungkan dua penhubung penggerak secara selari dengan membran yang 

nipis di antara pautan. Bagi Kaedah Unsur Terhingga (FEM) perisian-MARC akan 

digunakan, di mana geometri dan bahan bukan linear telah diombil kira untuk 

mensahihkkan keputusan simulasi, Dengan mengesahkan perision MARC, tiga jenis 

daripada akan dibar dingkan untuk memilih penggerak yang terbaik dengan sudut 

lentur yang terbesar. Seterusnya, dua penghubung penggerak ini akan simulasikan.
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INTRODUCTION

1.1 Project Background

The Flexible Actuator (FA) is a type of penumatic actuator that can bend, 

stretch, and twist in any direction by controlling pneumatic pressure in chambers of 

the actuator. Its characteristics are simple in structure and ease of miniaturization, 

multi-degrees of freedom and smooth motion. A single soft actuator is composed of 

two semi-circular chambers and reinforced with fiber. Application examples include 

manipulators, robot hands, and movable pipe inspection robots. A robotic fin is 

idealized with five actuators, which are serially connected by thin flexible rubber 

membranes. Each actuator consist of two chambers.

1.2 Problem Statement

Traditional robots have rigid underlying structures that limit their ability to 

bend. For example, conventional robot manipulators have rigid links and can 

manipulate objects using only their specialized end effects. A variety of animals and



plants can perform a complex movement with soft structures without having rigid 

components. Therefore the soft fish fin has to be developed to ease the life with a 

high flexible performance. By mimicing soft motion fish fin, Therefore the soft 

actuator has to be composed of some links to have a high flexible performance.

1.3 Objectives

i) To design several types of two chambers soft actuators in MARC.

ii) To compare and to obtain the best bending characteristics from different 

rubber model.

iii) To connect two actuators in parallel with a thin membranefor fish fin 

development.

To achieve these objectives, various parameters involved such as thickness of the 

wall, thickness of the center, fiber and rubber material will be considered.

1.4 Scopes

The process of this project will start by simulating several actuators. The 

actuators will be simulated by using the rubber and fiber material in FEM-MARC 

and they simulated by differences in their wall thickness t0 and thickness of center tc.



Then 200 KPa pressure will be applied to all actuators Actuators will be compared 

by their ability to bend and the actuator that has the most bending angles will be 

chosen for simulating two links actuators

1.5 Significance of the Project

Rigid actuators are less flexible and have higher risk if there is a contact with 

human. Having a soft actuator can perform that task as the rigid actuator with higher 

flexibility and minimum risk. The soft fish fin can be composed of many links to 

perform a better bending.The need of flexible actuator is increasing. A fish fin that is 

made of Flexible Actuator can produce high bending with soft manipulation on the 

object.

This chapter is an introduction of this project, the literature review of this 

project is in chapter two. Chapter three is an explanation method of simulation of 

singel and two links actuators, the results are in the following chapter four and there 

will be a discustion about them. A conclution will be made in chapter five according 

to previous chapters and further research works about this project will be brought out 

as well in order to ease the reader for further studies and modifications onto the 

project.
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