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ABSTRACT 

 

 

 

 

Yaw stability of an automotive vehicle in a various maneuvers is critical to 

the overall safety of the vehicle. Robust yaw stability control for a Through-the-Road 

Hybrid Electric Vehicle (TtR-HEV) with two in–wheel–motors in rear wheels is 

proposed using a Model Predictive control (MPC) controller. The propose technique 

aimed to enhance the yaw stability of TtR-HEV, especially on slippery roads to 

prevent vehicle from spinning out and provide safety driving under wide range of 

driving. This technique based on developed mathematical models of vehicle and 

tires. A Model Predictive control (MPC) controller applied to make vehicle yaw rate 

to track its reference. The control performance of the proposed yaw stability control 

system verified through computer simulation using MATLAB/SIMULINK. The yaw 

stability enhanced against uncertainties model, disturbances, and parameter 

variations. In addition, better performance achieved by applying the robust control 

that is satisfied high effectiveness and robustness. 
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ABSTRAK 

 

 

 

 

Kestabilan Yaw untuk kenderaan automotif dalam pelbagai jenis manuver 

adalah penting untuk keselamatan keseluruhan kenderaan. Kawalan kestabilan Yaw 

mantap untuk Through-the-Road Kenderaan Hibrid Elektrik (TtR-HEV) dengan dua 

dalam roda motor dalam roda belakang adalah dicadangkan menggunakan Kawalan 

Ramalan Model (MPC). Teknik yang dicadangkan adalah bertujuan untuk 

meningkatkan kestabilan Yaw untuk TtR-HEV, terutamanya di jalan raya yang licin 

untuk mengelakkan kenderaan daripada berpusing keluar dan menyediakan 

keselamatan pemandu. Teknik ini adalah berdasarkan model matematik yang 

didapatkan daripada kenderaan dan tayar. Kawalan Ramalan Model (MPC) 

digunakan untuk membuatkan kadar kenderaan Yaw untuk menjejak isyarat rujukan 

kenderaan tersebut. Prestasi sistem kawalan kestabilan Yaw yang dicadangkan 

disahkan melalui simulasi komputer menggunakan MATLAB/SIMULINK. 

Kestabilan Yaw dapat dipertingkatkan daripada ketidaktentuan model, gangguan, 

dan variasi parameter. Di samping itu, prestasi yang lebih baik dicapaikan dengan 

menggunakan kawalan yang teguh yang berpuas hati keberkesanan yang tinggi dan 

kekukuhan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Types of Hybrid Electric Vehicle 

 

 

A hybrid electric vehicle is one that has two or main sources of 

propulsion power. They have both internal combustion engine and  one or more 

electric motors and can be driven by either powertrain or together sources 

simultaneously. 

 

 

Recently, hybrid electric vehicle (HEV) have been developed very 

rapidly as a solution of energy problems, as well as environmental global 

warming issues. Compared to an internal combustion engine vehicles, a hybrid 

electric vehicle (HEV) can help reduce polluting emissions and can also offer 

highly reduced fuel consumption [1]. Thus, it has become the most available in 

technology and a great concern of researchers in this field. 

 

 

HEV have evident advantages over conventional internal combustion 

engine vehicles. Firstly, a quick, accurate and comprehensible torque response. 

Secondly, output torque can be easily measured from motor current. Thirdly 

electric motors which are fixed in each wheel can be independently controlled. 
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HEV can be classified according to hybrid architectures. The most 

common architectures are parallel, series, and combination parallel-series 

hybrid electric vehicles. The resulting configurations can be treated under the 

following general categories: 

 

 

 

 

1.1.1 The Series Hybrid Electric Vehicle 

 

 

In the series hybrid electric vehicle, where uses the electric motor to drive the 

vehicle and this provides all the propulsion power. The internal combustion engine 

(ICE) directly connected to an electric generator or alternator. The principal 

advantage of this configuration is that series hybrid vehicle typically used in heavy-

duty vehicles such as trucks, buses and other urban vehicles involved in a lot of stop-

and-go driving. The system also reduces the need for conventional transmissions and 

clutches. This architecture has high efficiency and has very low emissions. The 

inefficiency associated with series hybrid, it is much low efficiency during high 

speed driving, due to losses in converting the mechanical power from the ICE to 

electricity and in charging and discharging of the battery as well as it also requires a 

large and heavy battery pack, which lead to increases cost and reduces vehicle 

performance from the weight of the batteries. The series hybrid architecture is 

depicted in Figure 1.1. 
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Figure 1.1       Configuration of a series hybrid electric vehicle [2]. 

 

 

 

 

1.1.2 The Parallel Hybrid Electric Vehicle 

 

 

The parallel hybrid uses a motor or more and an engine to powered the 

wheels of the hybrid electric vehicle together. The engine and motors are both 

connected directly to the drive train (see Figure 1.2). The main advantages of parallel 

architecture over a series architecture are generator is not required as well as the 

traction motor is smaller and light battery. Thus, this can minimizes the additional 

cost of the motor and battery pack. But the control of the parallel hybrid drive train is 

more complicated than a series, due to the mechanical coupling between the engine 

and the driven wheels. 

 

 

Parallel-hybrid vehicles can be further divided into two categories according 

to the location of the electric motors. First category, the engine-assist systems, 

secondly, known as a through-the-road hybrid. In this research will be design robust 

yaw stability control of through-the-road hybrid electric vehicle (TtR-HEV).  
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Figure 1.2       Configuration of a parallel hybrid electric vehicle [2]. 

 

 

 

 

1.1.2.1  Through-the-Road Hybrid Electric Vehicle 

 

 

In the Through-the-Road (TtR) configuration of parallel hybrid electric 

vehicle (HEV), electric motors are coupled on one axle and the internal combustion 

engine (ICE)  is coupled on the other axle. Therefore, the power from the ICE to the 

electric motors can be transmitted via the road and wheels when the vehicle is 

moving. In other word, when both ICE and electric motors are operating together, a 

“TtR-HEV” mode is obtained. An example TtR-HEV architecture is depicted in 

Figure 1.3. 
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Figure 1.3       Configuration of a powertrain for a TtR-HEV. 

 

 

1.1.3 Series-Parallel or Power-Split Hybrid 

 

 

The series-parallel hybrid included usefulness and the construction of the 

series and parallel drive trains. By consolidating the two configurations, the ICE can 

be used to propulsion specifically wheels (as in the parallel drive train) and likewise 

be enough discontinued from the wheels so that only the electric motor propels the 

wheels (as in the series drive train). As a result of this new design, the ICE works at 

near optimum efficiency frequently. This framework is more costly because of the 

more complex hardware. In any case, the series-parallel hybrid has the possibility to 

fulfill better than either of the series or parallel hybrid systems alone. The 

configuration of a series-parallel hybrid drivetrain is shown in Figure 1.4. 

 

 

 

 

 

 

 

 

 

Figure 1.4      Configuration of a series-parallel hybrid or a power-split drivetrain 

[2]. 
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1.2 Yaw Stability 

 

 

Stability control systems that prevent automotive vehicle from skidding and 

spinning out are often referred to as yaw stability control systems [2]. Yaw stability 

of hybrid electric vehicle in a cornering situation is critical to vehicle stability and 

handling performance. Yaw stability aims to improve safety by keeping the vehicle 

yaw rate following its target commanded by the driver and keeping the vehicle slip 

angle in a small range (see Figure 1.5). In other words, yaw stability ensures a 

vehicle does not spin uncontrollably during emergency maneuvers and in critical 

driving conditions.  

 

 

 

 

Figure 1.5      The functioning of a yaw stability control system [2]. 
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1.3 Problem Statement 

 

 

A study done by Ackermann (1997) found that the yaw rate of the automotive 

vehicle is not only stirred by lateral acceleration in a way that the driver is used to, 

but also by disturbance torques resulting for example when a car encounters 

unexpected road conditions, such as a split-μ road, the tire slip angles. So, the vehicle 

slip angle may suddenly increase, which causes the vehicle to reach its physical limit 

of adhesion between the tires and the road. The driver has to compensate this 

disturbance torque by opposing at the steering wheel in order to provide disturbance 

reduction. This is the more hard task for the driver because the disturbance input 

comes as an abruptness to him; since most drivers have less experience operating a 

vehicle under this situation, they might at last lose control of the vehicle [30]. 

 

Accordingly vehicle yaw stability ensures a car does not spin uncontrollably 

during  emergency maneuvers and in critical driving conditions. This capability is 

especially needed when a car makes a sharp or high speed turn along a slippery road. 

Useful articles, researches and studies have been written about  robust yaw stability 

control of hybrid electric vehicles, but there is little research has been done of TtR-

HEV. With the above problem statement established, it is obvious to state that it is 

highly significant to design a robust yaw stability control of  Through-the-Road 

Hybrid Electric Vehicle (TtR-HEV). 
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1.4 Objective of Study 

 

 

The objective of this research are as follows: 

 

(a.) To develop a single-track TtR-HEV model 

(b.) To design a controller that  is satisfy the robust yaw stability of a TtR-HEV. 

(c.) To simulate and evaluate the performance of the system with a proposed 

controller. 

 

 

 

 

1.5 Scope of the Project 

 

 

This study focuses on the  system that is Through-the-Road Hybrid Electric 

Vehicle (TtR-HEV), which contains the internal combustion engine (ICE) mounted 

on the front axle and two in-wheel-motors for rear traction. The work undertaken in 

this project are limited to the following aspects: 

(a.) Mathematical model of the TtR-HEV is developed of a single track car 

model. 

(b.) A controller will be designed to maintain the yaw stability of TtR- 

HEV based on mathematical models of vehicle and tires using MPC 

control technique. 

(c.) Perform a simulation works by using MATLAB/SIMULINK to 

observe effectiveness and robustness of the controller. 
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