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ABSTRACT 

Radial Basis Function Neural Network (RBFNN) is a class of Artificial 

Neural Network (ANN) widely used in science and engineering for 

classification problems with Backpropagation (BP) algorithm. However, 

major disadvantages of BP are due to the relatively slow convergence rate and 

always being trapped at the local minima. To overcome this problem, an 

improved Backpropagation (MBP) algorithm using modified cost function 

was developed to enhance RBFNN learning with discretized data to enhance 

the performance of classification accuracy and error rate convergence of the 

network. In RBFNN learning with Standard Backpropagation (SBP), there are 

many elements to be considered such as the number of input nodes, number of 

hidden nodes, number of output nodes, learning rate, bias rate, minimum error 

and activation functions. These parameters affect the speed of RBFNN 

learning. In this study, the proposed MBP algorithm was applied to RBFNN 

to enhance the learning process in terms of classification accuracy and error 

rate convergence. The performance measurement was conducted by 

comparing the results of MBP-RBFNN with SBP-RBFNN using five 

continuous and five discretized dataset with ROSETTA tool kit. Two 

programs have been developed: MBP-RBFNN and SBP-RBFN. The results 

show that MBP-RBFNN gave the better results in terms of classification 

accuracy and error rate compared to SBP-RBFNN, together with statistical 

test to verify the significance of the results on the classification accuracy. 
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ABSTRAK 

 

 

 

Rangkaian Saraf  Fungsi Asas Radial (RBFNN) merupakan satu kelas 

rangkaian saraf buatan (ANN) telah banyak digunakan dalam bidang sains dan 

kejuruteraan berkaitan masalah pengelasan dengan algoritma rambatan balik 

(BP). Walau bagaimanapun, kelemahan utama BP adalah terhadap kadar 

penumpuan yang agak perlahan dan sering terperangkap dalam minimum 

setempat. Untuk mengatasi masalah ini, algoritma penambahbaikan rambatan 

balik (MBP) menggunakan fungsi kos yang diubahsuai telah dibangunkan 

untuk meningkatkan pembelajaran RBFNN dengan data terdiskret bagi 

meningkatkan prestasi ketepatan pengelasan dan penumpuan kadar ralat 

rangkaian. Dalam pembelajaran RBFNN menggunakan rambatan balik piawai 

(SBP), terdapat banyak elemen yang perlu dipertimbangkan seperti bilangan 

input nod, bilangan nod tersembunyi dan nod output, kadar pembelajaran, 

kadar bias, ralat minimum dan fungsi pengaktifan. Parameter ini memberi 

impak kepada kepantasan pembelajaran RBFNN. Dalam kajian ini, algoritma 

MBP yang dicadangkan terhadap RBFNN dilaksanakan bagi meningkatkan 

proses pembelajaran dari segi ketepatan pengelasan dan kadar penumpuan 

ralat. Pengukuran prestasi dibuat dengan membandingkan keputusan MBP-

RBFNN dengan SBP-RBFNN menggunakan lima set data selanjar dan lima 

set data terdiskret dengan alatan ROSETTA. Dua aturcara telah dibangunkan: 

MBP-RBFNN dan SBP-RBFN. Hasil kajian menunjukkan bahawa MBP-

RBFNN memberikan keputusan yang lebih baik dari segi ketepatan 

pengelasan dan kadar ralat berbanding dengan SBP-RBFNN bersama-sama 

dengan ujian statistitk bagi mengesahkan kesahihan keputusan terhadap 

ketepatan pengelasan. 
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CHAPTER   1 

INTRODUCTION 

1.1       Overview 

Artificial Neural Network (ANN) was developed as a parallel distributed 

system that is inspired by the biological learning process of the human brain. The 

primary importance of ANN is its capacity of learning to solve problems through 

training. There are many types of ANN and among them is Self-Organizing Map 

(SOM), Backpropagation Neural Network (BPNN), Spiking Neural Network (SNN), 

Radial Basis Function Neural Network (RBFNN), etc. RBF was first proposed in 

1985 and subsequently  Lowe and Broomhead (1988), were the first to apply RBF to 

design neural network. In their design, they compared RBFNN with the multilayer 

neural network, and they showed the relationship that exists between them. However, 

Moody and Darken (1989), proposed a new class of neural network, the RBFNN. 

The RBFNN is a type of ANN which uses RBFs as activation functions. It is 

an ANN that is unique in its own right. This is because RBFNN has only three 

layers. It has only one hidden layer unlike other types of ANN that have one or more 

hidden layers. It is also a network that is feed forward and fully connected (Chen, 

2010). The RBFNN output is an arrangement of RBFs of inputs and neuron 

parameters linearly. RBFNN has several benefits above its predecessors. Some of the 

benefits include having simple network architecture, ability to approximate better 

and also algorithms that learn faster (Chang, 2013). RBFNNs are used to solve 
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problems such as classification problems, function approximation, system control, 

and time series prediction.  

As a result of the above mentioned benefits, RBFNN enjoys patronage in 

science and engineering. According to Yu et al. (1997) RBFNN has only three 

layers. Radial function is applied as activation function for all the neurons of the 

hidden layer. Also, output layer neuron on the other hand, computes a weighted sum. 

RBFNN training is normally divided into two stages.  RBFNN training is in two 

stages. Between input neurons to hidden neurons is the first stage where clustering 

takes place using unsupervised learning and nonlinear transformation while on the 

other hand at the second stage, supervised learning is implemented between the 

hidden nodes and the output nodes with linear transformation taking place.  

Clustering algorithms are used to determine the centre and weight of the hidden 

layer.  Least Mean Squares (LMS) algorithm applied between hidden and output 

layer to determine the weights (Yu et al., 1997).  Other clustering algorithms can also 

be used such as, decision trees, vector quantization, and self-organizing feature maps. 

RBFNN‟s hidden node performs distance transformation of the input space. 

The RBF fundamental design maps non-linear problem into a high dimension space 

which turns the problem into a linear one. Linear and non-linear mapping is 

implemented from input to hidden layer and hidden to output layer of RBFNN 

respectively. The weights thou can be adjusted have a value of 1 between the input 

layers and the hidden layers (Chen, 2010). The hidden layer nodes determine the 

behaviour and structure of the network.  Gaussian function is used to activate the 

hidden layer (Qasem and Shamsuddin, 2009). 

Functions given by hidden neurons create random starting point for input 

patterns (Qu et al., 2003). In this context the training is a means of adjusting the 

values of the weights and biases of the neurons continuously until a predetermined 

condition is satisfied i.e. defined error function. There are many ways to minimize 

the error functions by fine-tuning the weights such as using BP algorithms. BP 
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algorithm has been widely used as training algorithm for ANN (Zweiri et al., 2002), 

this also applies to RBFNN. 

BP algorithm is employed to train ANN in supervised learning mode. 

Supervised learning is guided by the desired target values for the network. During 

the training, the aims are to match the network results to the expected target values. 

Genetic Algorithm (GA) is a famous evolutionary technique also used for training 

ANN (Mohammed, 2008).  In RBFNN training, we need to first determine the 

cluster centres of the hidden nodes, by using clustering algorithms. 

Clustering algorithms are capable of finding cluster centres that best 

represents the distribution of data. This algorithm has been used for RBFNNs 

training. K-means algorithms have also been used to train RBFNN with some 

limitations in real applications.  Several other algorithms have been used in 

clustering such as Manhattan distance, Euclidean distance, DBSCAN algorithm, etc.  

Particle Swarm Optimization (PSO) (Cui et al., 2005) is another computational 

intelligence method that has been widely used in data clustering. 

Research has been going on for years on how to improve BP learning 

algorithm for better classification accuracy. In this study, we are applying the 

Modified backpropagation (MBP) with Modified Cost Function (MM) by 

(Shamsuddin et al., 2001) with improved learning parameter value to train RBFNN 

with discretized data. Thus, this study attempts to investigate the performance of 

RBFNN by determining values for convergence or learning rate and correct 

classification accuracy of the network. In this study, five standard dataset will be 

used as yardstick for classification problems to illustrate the efficiency improvement 

of the proposed algorithm. This study will compare the result of proposed algorithm 

(MBP-RBFNN) with the result of the original Standard Backpropagation Radial 

Basis Function Neural Network (SBP-RBFNN). We would use the MBP by 

(Shamsuddin et al., 2001) error function to test the classification accuracy and 

convergence for classification problems with discretized data.  
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Discretization is a method of dividing range of continuous attributes into 

disjoint regions or intervals. It is one way of reducing data or changing original 

continuous attribute into discrete attribute as a form of data preprocessing stage 

(Goharian et al., 2004). The advantages of discretization are reduction in data size 

and simplification, easier to understand and easy to interpret, faster and accurate 

training computation process, and the representation is non-linear (Dougherty et al., 

1995; Leng and Shamsuddin, 2010; Liu et al., 2002). Based on different theoretical 

origins there are many types, such as supervised versus unsupervised, global versus 

local and dynamic versus static (Agre and Peev, 2002; Saad et al., 2002). 

1.2 Problem Background  

RBFNN is an ANN, which uses RBF as activation functions. RBFNN forms 

a unique kind of ANN architecture with only three layers. In RBFNN, different 

layers of the network perform different tasks. This kind of behaviour is the resultant 

of the primary issue or problem with RBFNN. Therefore, a good practise here is 

separating the procedure or activities that took place in the hidden and output 

network layer by using various techniques. 

In addition, to train RBFNN, we can take a two-step training strategies. The 

first step is called unsupervised learning. Unsupervised learning is used to determine 

RBFNN centres and widths of the clusters with clustering algorithms. This procedure 

is known as Structure Identification Stage. The second step is called supervised 

learning. This is employed to determine the weights from hidden to output layers, 

otherwise known as parameters estimation phase which has high running time. 

Moreover, other weakness is that local information is used in determining the 

centres of hidden units. It is useful to merge the structure identification with 

parameters estimation as one process. On the other hand, this problem cannot be 

easily solved by the standard techniques. Therefore, this study proposed RBFNN 
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training with MBP algorithm using discretized data. With the hope that this proposed 

method will give better classification accuracy and lower error convergence rates. 

1.3 Problem Statement 

Several parameters in RBFNN trained with SBP (otherwise known as SBP-

RBFNN) need to be considered. The activation function, number of nodes in all the 

three layers, the learning and momentum rates, bias, and minimum error. All these 

factors will have an effect on the convergence rate of RBF Network training. In this 

study, the proposed method will use MBP algorithm to train RBFNN to give the 

optimum pattern of weight for better classification of data. Our focus is limited to the 

correct classification accuracy and error rate convergence. 

The entire problem involves minimization of the error function. This is 

somewhat complex using the traditional learning methods, primarily due to the 

existence of the number of units in the hidden layer. MBP algorithm can be applied 

to obtain the best convergence rate and the classification accuracy of RBFNN 

training. Therefore, this study will investigate the performance of the MBP-based 

learning algorithm for RBFNN in terms classification accuracy and error 

convergence rates. 

The research questions of this study can be said as: 

  

1. Could MBP algorithm enhance learning capability of RBFNN with 

discretized data? 

2. How significant is MBP in training the RBFNN with discretized data?  

3. How efficient is the MBP cost function in enhancing the performance of 

RBFNN with discretized data? 
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1.4 Aim 

This study aims to examine the effectiveness of Modified BP algorithm, with 

modified cost function in training RBF Network using discretized datasets as 

opposed to RBFNN Network trained with standard Backpropagation algorithm with 

respect to error convergence rate, correct classification accuracy and cost function.  

1.5 Objectives 

The objectives of this study are: 

 

1. To develop a MBP algorithm for RBFNN learning method. 

2. To compare the performance of the proposed MBP-RBFNN method with 

SBP-RBFNN in terms of classification accuracy and error rate. 

3. To investigate the effectiveness of discretized dataset on MBP-RBFNN 

algorithm on continuous dataset. 

1.6 Scope 

To achieve the stated objectives above, the scope of this study is limited to 

the following: 

 

1. Five standard datasets: XOR, balloon, Iris Cancer and Ionosphere, will be 

used in this study. 

2. To apply ROSETTA Toolkit for dataset discretization. 

3. Modified BP-RBF Network with discretized data. 

4. The performance of MBP training algorithm for RBFNN will be compared to 

RBFNN Network trained with SBP algorithm.  
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5. The network architecture consists of three layers: input, hidden and output to 

standardize the comparison criteria. 

6. The coding of the MBP-RBFNN and SBP-RBFNN programs will be in C 

Language using Microsoft Visual C++ 2010, running on Microsoft Windows 

7 Professional on a HP-Compaq-8100 Elite SFF PC running on Intel(R) 

Core(TM) i5 CPU with 2.00 GB of internal memory and 32-bit OS Machine.  

7. SPSS version 16.0 was used to carry out t-test statistical analysis only on the 

classification accuracy in k-fold experiments to ascertain the correlation of 

the results obtained from the two algorithms. 

1.7 Importance of the Study 

The performance of RBFNN with Modified BP algorithm, standard BP 

algorithm Network and other methods in literature will be analysed. Hence the best 

method can be ascertained for RBFNN training. It would be significant in confirming 

that Modified BP can be successfully be used to solve challenging problems.  

1.8 Organization of the Thesis  

The study comprise of five chapters starting from chapter one to chapter five: 

Chapter 1 provides a general introduction to the study. It comprises sections such as 

overview, problem background, problem statement, aim, objectives, scope and 

importance of the study. Chapter 2 deals with the literature review on previous 

studies related to this study, it discusses ANN, BP algorithm, classification problem 

Cost function, RBFNN, data clustering, least means squares (LMS) algorithms, 

discretization, rough set for data analysis and summary. Chapter 3 covers the 

methodology of the research, which focuses on the application of the Modified BP 

algorithm to enhance RBFNN Network training, dataset used in the experiments and 

how they are used. Chapter 4 presents and discusses the experiments and 
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experimental setup as well as the analysis of the experimental results. Chapter 5 

contains conclusions and suggestions for future work. 
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