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ABSTRACT 

 

 

 

 

 Plants should be built so that they are user-friendly and able to tolerate 

deviation from ideal performance as a result of operators and equipment failures 

without serious impacts on safety, productivity or efficiency.  Before any effort for 

hazard reductions can be performed, it is important to first understand the hazards of a 

process which can be achieved through hazard assessments.  Most of the current 

inherent safety assessment methods are index-based method which suffers from the 

shortcomings of subjective scaling.  The aim of this research is to develop an inherent 

safety assessment method that eliminates the issue of subjective scaling in index 

scores assignment.  The Numerical and Graphical Descriptive (GRAND) method is 

developed through the application of logistic functions.  In this study, all 

petrochemical processes data obtained from literature was used in constructing 

numerical scores through the application of logistic functions.  The numerical scores 

was then translated into graphical form.  GRAND Total Score and GRAND Ranking 

Curve developed in this study can be used for the purpose of comparing alternative 

process synthesis routes to the desired product by their hazard level for inherent safety 

assessment during research and development (R&D) stage.  Process route with a 

higher GRAND Total Score indicates greater hazards compared to the route with a 

lower GRAND Total Score.  There are eight parameters involved which are divided 

into two groups. The first group is chemical safety parameters which consists of 

flammability, explosiveness, toxicity and reactivity parameters while the second group 

is process safety parameters which consists of temperature, pressure, heat of reaction 

and process inventory parameters.  A gap elimination test was done on GRAND with 

the purpose of ensuring the elimination of subjective scaling.  The gap elimination test 

result shows that GRAND has the ability to eliminate the problems of subjective 

scaling in scores assignment.  The method developed was applied on two case studies 

which are methyl methacrylate manufacturing process and acetic acid manufacturing 

process.  In the case study of methyl methacrylate manufacturing process, tertiary 

butyl alcohol based route was assessed as the safest route among the six routes 

evaluated while ethylene via propionaldehyde based route was assessed as the most 

hazardous one with the score of 311 and 509, respectively.  There are ten process 

routes evaluated in the case study of acetic acid manufacturing process.  GRAND 

assessment shows ethanol oxidation route as the safest route and ethane oxidation 

route as the most hazardous route with the score of 180 and 402 respectively.  Results 

obtained from the gap elimination test as well as case studies performed proves that 

the method proposed in this research is successful in eliminating the common problem 

in index-based method which is subjective scaling for inherent safety assessment in 

petrochemical industry. 
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ABSTRAK 

 

 

 

 

 Kilang pemprosesan hendaklah dibina dengan ciri-ciri keselamatan bagi 

mengelakkan berlakunya kemalangan yang berpunca daripada kecuaian pekerja atau 

kerosakan peralatan. Selain daripada mengurangkan risiko bahaya, pemahaman dalam 

punca kewujudan risiko melalui penilaian risiko juga adalah penting.  Kebanyakan 

kaedah penilaian keselamatan yang wujud adalah kaedah yang berasaskan indeks 

dengan kekurangan daripada segi sistem pemarkahannya yang subjektif.  Objektif 

penyelidikan ini adalah untuk membina satu kaedah baru dalam menilai risiko yang 

dapat mengatasi masalah pemarkahan subjektif. Kaedah Numerical and Graphical 

Descriptive (GRAND) dibina melalui pengaplikasian persamaan logistik.  Data-data 

bagi proses petrokimia yang diperolehi daripada literatur digunakan dalam pembinaan 

persamaan logistik yang bersesuaian dengan objektif GRAND.  Persamaan logistik 

tersebut kemudiannya ditukarkan ke bentuk grafikal.  Perbandingan tahap risiko di 

antara setiap laluan proses yang dinilai dapat dibuat menggunakan GRAND Total 

Score dan GRAND Ranking Curve.  Laluan proses dengan GRAND Total Score yang 

tinggi menunjukkan tahap risiko yang tinggi berbanding laluan proses dengan GRAND 

Total Score yang rendah.  Ujian bagi membuktikan bahawa GRAND dapat mengatasi 

masalah pemarkahan subjektif menunjukkan keputusan yang positif.  Terdapat dua 

kumpulan komponen keselamatan yang dinilai dalam GRAND.  Kumpulan pertama 

merupakan komponen keselamatan bahan kimia yang terdiri daripada komponen 

kemudahbakaran, keletupan, tahap toksik dan tahap reaktiviti bahan manakala 

kumpulan komponen kedua merupakan komponen keselamatan proses yang terdiri 

daripada komponen suhu, tekanan, kadar reaksi proses serta inventori proses.  Kaedah 

yang dibina ini telah digunakan ke atas dua kajian kes iaitu proses pembuatan metil 

metakrilat dan proses pembuatan asid asetik. Kajian kes proses pembuatan metil 

metakrilat menunjukkan laluan proses berasaskan butil alkohol tertiar adalah yang 

paling selamat antara enam laluan proses yang dinilai dengan markah 311 manakala 

laluan proses yang berasaskan etilena melalui propionaldehid adalah yang paling 

berisiko dengan markah 509. Terdapat sepuluh laluan proses yang dinilai bagi proses 

pembuatan asid asetik dengan laluan proses pengoksidaan etanol dengan markah 180 

dinilai sebagai laluan proses yang paling selamat manakala laluan proses 

pengoksidaan etana dengan markah 402 sebagai yang paling berisiko.  Keputusan 

yang diperoleh daripada ujian penghapusan pemarkahan subjektif dan juga kajian kes 

yang telah dilakukan menunjukkan keupayaan GRAND dalam mencapai objektifnya 

serta dapat diaplikasikan dengan efektif dalam penilaian keselamatan dalam industri 

petrokimia. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Advanced technologies as well as economic achievements in modern 

development brought by petrochemical industries is one of the main factors that helps 

in upgrading human lifestyle throughout the world.  However, it is not surprising that 

serious safety problems occur from their operations.  Equipment malfunction as well 

as human errors are well-known as major accidents causes in all industries. Many 

strategies have been introduced in order to reduce or minimizing their impacts.  

However, it is impossible for operators to continuously maintain an error free 

performance all day long, throughout their work-lifetime. Thus, plant should be built 

so that they are user-friendly and able to endure deviation from ideal work routine by 

operators and equipment failures without serious impacts on safety, output or 

efficiency (Kletz and Amyotte, 2010).  

 

 

Since the disastrous explosion in Flixborough in 1974 which causing 28 

fatalities, there have been many papers produced on modes of preventing similar 

incidents from occurring again (Kletz and Amyotte, 2010).  Most of the papers 

suggested the need for additional installation of more and better protective equipment 

such as gas detectors, fire protection and firefighting equipment, trips and alarms, 

scrubbers and flare stacks and so on. However, the equipment addition although 

necessary is also expensive and complex. Thus, plants should be designed so that 

small amounts of hazardous materials is used so that it does not matter if it all leaks or 

use safer materials instead of the hazardous ones. 
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Another approach is to use the hazardous materials at lower operating 

conditions in order to avoid the hazard problems rather than solving the hazard 

problems resulting to an inherently safer plants which are more cost efficient and 

more controllable.  Although avoiding hazards plays a major role in designing a user-

friendly plant, it is also important to identify and understand hazards posed by the 

process.  According to the hierarchy of controls (Kletz and Amyotte, 2010), avoiding 

hazards comes after identifying and understanding the hazards which can be achieved 

through hazards assessment.  Many methods had been developed in order to assess 

inherent safety performance of a process during process design stage for example the 

Prototype Index for Inherent Safety (PIIS) (Edwards and Lawrence, 1993), Inherent 

Safety Index (ISI) (Heikkila, 1999), SHE Method (Koller et al., 2000), i-Safe 

(Palaniappan et al., 2002a, b) and also Inherent Chemical Process Properties Data 

(Hassim and Ali, 2009).  

 

 

 

 

1.2 Problem Statement 

 

 

As mentioned previously, plants should be built so that they are user-friendly 

and able to prevent accidents from happens.  Process safety evaluation during the very 

early design stage will assist in selecting the safer process route among several 

alternatives.  The route with less hazardous chemicals and operating conditions is 

obviously will result in inherently safer and user-friendly plant. Most current safety 

assessment methods for evaluation of process design stage are mostly index-based 

method such as the PIIS (Edwards and Lawrence, 1993), ISI (Heikkila, 1999), SHE 

Method (Koller et al., 2000), i-Safe (Palaniappan et al., 2002a, b) and also Inherent 

Chemical Process Properties Data (Hassim and Ali, 2009).  Index-based methods are 

attractive for inherent safety assessment due to their ability to be used during early 

process design stage in which there are limited amount of data available for 

evaluation. In index-based method, related factors to the process route is reduced to 

one quantitative factor, thus enables this approach to be used for decision making 

(Srinivasan and Nhan, 2008). Index-based method is attractive for usage in the 

industry due to this simplicity (Gupta and Edwards, 2003). Index-based method 

experienced many shortcomings as highlighted by Srinivasan and Nhan (2008) and 
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one of them is subjective scaling.  Subjective scaling is scaling by dividing physical or 

chemical properties into subjective ranges and each range is assigned scores according 

to the authors’ judgment for example dividing the value range into ten equal sub-

ranges as used in Lawrence (1996).  This implies that all chemical or physical values 

in that particular sub-ranges possessed the same level of hazard when in actual truth 

that is not the case.  Another form of subjective scaling is discontinuity at the sub-

range boundary (Gupta and Edwards, 2003).  Usually the difference between lower 

boundary of a sub-range and upper boundary of another sub-range is only one value 

away.  Since the score are assigned to each sub-range instead of each values, process 

which is one value higher than another process may be interpreted as possessing 

higher hazard which in reality both process may have similar level of hazard.  

 

 

Inherent Benign-ness Index (IBI) (Srinivasan and Nhan, 2008) and the 

Hierarchical Fuzzy Model for the evaluation of inherent safety (Gentile, 2004) are two 

examples of inherent safety assessment methods that eliminates the shortcomings of 

index-based method in their methods. In order to eliminate the shortcomings of index-

based method, the IBI incorporates a multivariate statistical approach known as 

Principal Component Analysis (PCA) while the Hierarchical Fuzzy Model 

incorporates fuzzy logic approach.  Although both methods eliminates the 

shortcoming of index-based method successfully, they have complex development 

step.  Execution of inherent safety assessment can also be done using process design 

simulator for example HYSYS software as incorporated by Shariff et al. (2006) in 

Integrated Risk Estimation Tool (iRET).  Other methods that follows the same 

execution approach as iRET is Process Route Index (PRI) (Leong and Mohd Shariff, 

2009), Toxic Release Consequence Analysis Tool (TORCAT) (Mohd Shariff and 

Zaini, 2010) and also Process Stream Index (PSI) (Mohd Shariff et al., 2012).  

Incorporation of process design simulator is helpful in designing inherently safer 

design process. However, it is not suitable to be used in assessing inherent safety 

during research and design stage due to limited amount of data available.  

 

 

Instead of using a complex execution method, this research proposed an 

inherent safety assessment method which incorporates logistic function in its 

execution which is simpler and suitable to be used during research and development 
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stage.  Incorporation of logistic function also able to eliminate the subjective scaling 

problem that exists in the index-based method. 

 

 

 

 

1.3 Objectives of Study 

 

 

The objective of this research is to develop an inherent safety assessment 

technique for assessment during research and development (R&D) stage.  There are 

two sub-objectives that need to be fulfilled in order to achieve the main objective. 

 

1. To develop a numerical safety assessment technique which evaluates safety 

parameters without the shortcomings of subjective scaling. 

 

2. To construct a graphical representation of the assessment results for root-cause 

analysis of the process. 

 

 

 

 

1.4 Scopes of Study 

 

 

 In order to achieve the main objective of this study, there are four scopes that 

will be attended.   

 

1. Review the current inherent safety assessment methods on the approaches 

used as well as the parameters incorporated. 

 

2. Construct numerical safety assessment technique focusing on 

petrochemical processes chemical and operational data based on logistic 

function. 

 

3. Incorporates chemical safety and process condition safety parameters 

available for assessment during research and development stage in the 

assessment technique developed. 
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4. Applying the proposed inherent safety assessment on several case studies 

of petrochemical processes during research and development stage to 

illustrate the effectiveness of the new technique. 

 

 

1.5 Research Contributions 

 

 

 The key specific contributions of this work are summarized as follows: 

 

1. Development of a new inherent safety evaluation technique for assessment in 

petrochemical industry. 

2. Application of logistic functions for hazard scoring purposes to overcome 

subjective scaling issues. 

3. Graphical representation of assessment results for root-cause analysis down to 

the chemical substance level. 

4. The proposed technique can be tailored to company’s own data. 

5. The proposed method is useful for quick yet comprehensive comparison of 

alternative processes. 

6. This method is applicable for inherent safety evaluation during research and 

development (R&D) stage which requires limited process data. 
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