NUMERICAL AND GRAPHICAL DESCRIPTIVE TECHNIQUE FOR INHERENT SAFETY ASSESSMENT IN PETROCHEMICAL INDUSTRY

SYAZA IZYANNI BINTI AHMAD

UNIVERSITI TEKNOLOGI MALAYSIA

NUMERICAL AND GRAPHICAL DESCRIPTIVE TECHNIQUE FOR INHERENT SAFETY ASSESSMENT IN PETROCHEMICAL INDUSTRY

SYAZA IZYANNI BINTI AHMAD

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Chemical)

> Faculty of Chemical Engineering Universiti Teknologi Malaysia

> > FEBRUARY 2014

To my beloved mother and father

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my main supervisor, Associate Proffessor Dr. Haslenda Hashim for encouragement and guidance. I am also very thankful to my internal co-supervisor, Dr. Mimi Haryani Hassim for guidance and motivation. I also want to express my appreciation to my external co-supervisor from National University of Singapore, Associate Professor Rajagopalan Srinivasan for his advices. Besides them, I also would like to thank all individuals, researchers as well as academicians that I was in contact during the duration of my research. Their support and critics plays an important role in completing this research.

I am also indebted to Universiti Teknologi Malaysia (UTM) for funding my Master Study. Lastly, I also want to thank my family and colleagues who have provided assistance at various occasions.

ABSTRACT

Plants should be built so that they are user-friendly and able to tolerate deviation from ideal performance as a result of operators and equipment failures without serious impacts on safety, productivity or efficiency. Before any effort for hazard reductions can be performed, it is important to first understand the hazards of a process which can be achieved through hazard assessments. Most of the current inherent safety assessment methods are index-based method which suffers from the shortcomings of subjective scaling. The aim of this research is to develop an inherent safety assessment method that eliminates the issue of subjective scaling in index scores assignment. The Numerical and Graphical Descriptive (GRAND) method is developed through the application of logistic functions. In this study, all petrochemical processes data obtained from literature was used in constructing numerical scores through the application of logistic functions. The numerical scores was then translated into graphical form. GRAND Total Score and GRAND Ranking Curve developed in this study can be used for the purpose of comparing alternative process synthesis routes to the desired product by their hazard level for inherent safety assessment during research and development (R&D) stage. Process route with a higher GRAND Total Score indicates greater hazards compared to the route with a lower GRAND Total Score. There are eight parameters involved which are divided into two groups. The first group is chemical safety parameters which consists of flammability, explosiveness, toxicity and reactivity parameters while the second group is process safety parameters which consists of temperature, pressure, heat of reaction and process inventory parameters. A gap elimination test was done on GRAND with the purpose of ensuring the elimination of subjective scaling. The gap elimination test result shows that GRAND has the ability to eliminate the problems of subjective scaling in scores assignment. The method developed was applied on two case studies which are methyl methacrylate manufacturing process and acetic acid manufacturing process. In the case study of methyl methacrylate manufacturing process, tertiary butyl alcohol based route was assessed as the safest route among the six routes evaluated while ethylene via propionaldehyde based route was assessed as the most hazardous one with the score of 311 and 509, respectively. There are ten process routes evaluated in the case study of acetic acid manufacturing process. GRAND assessment shows ethanol oxidation route as the safest route and ethane oxidation route as the most hazardous route with the score of 180 and 402 respectively. Results obtained from the gap elimination test as well as case studies performed proves that the method proposed in this research is successful in eliminating the common problem in index-based method which is subjective scaling for inherent safety assessment in petrochemical industry.

ABSTRAK

Kilang pemprosesan hendaklah dibina dengan ciri-ciri keselamatan bagi mengelakkan berlakunya kemalangan yang berpunca daripada kecuaian pekerja atau kerosakan peralatan. Selain daripada mengurangkan risiko bahaya, pemahaman dalam punca kewujudan risiko melalui penilaian risiko juga adalah penting. Kebanyakan kaedah penilaian keselamatan yang wujud adalah kaedah yang berasaskan indeks dengan kekurangan daripada segi sistem pemarkahannya yang subjektif. Objektif penyelidikan ini adalah untuk membina satu kaedah baru dalam menilai risiko yang dapat mengatasi masalah pemarkahan subjektif. Kaedah Numerical and Graphical Descriptive (GRAND) dibina melalui pengaplikasian persamaan logistik. Data-data bagi proses petrokimia yang diperolehi daripada literatur digunakan dalam pembinaan persamaan logistik yang bersesuaian dengan objektif GRAND. Persamaan logistik tersebut kemudiannya ditukarkan ke bentuk grafikal. Perbandingan tahap risiko di antara setiap laluan proses yang dinilai dapat dibuat menggunakan GRAND Total Score dan GRAND Ranking Curve. Laluan proses dengan GRAND Total Score yang tinggi menunjukkan tahap risiko yang tinggi berbanding laluan proses dengan GRAND Total Score vang rendah. Ujian bagi membuktikan bahawa GRAND dapat mengatasi masalah pemarkahan subjektif menunjukkan keputusan yang positif. Terdapat dua kumpulan komponen keselamatan yang dinilai dalam GRAND. Kumpulan pertama merupakan komponen keselamatan bahan kimia yang terdiri daripada komponen kemudahbakaran, keletupan, tahap toksik dan tahap reaktiviti bahan manakala kumpulan komponen kedua merupakan komponen keselamatan proses yang terdiri daripada komponen suhu, tekanan, kadar reaksi proses serta inventori proses. Kaedah yang dibina ini telah digunakan ke atas dua kajian kes iaitu proses pembuatan metil metakrilat dan proses pembuatan asid asetik. Kajian kes proses pembuatan metil metakrilat menunjukkan laluan proses berasaskan butil alkohol tertiar adalah yang paling selamat antara enam laluan proses yang dinilai dengan markah 311 manakala laluan proses yang berasaskan etilena melalui propionaldehid adalah yang paling berisiko dengan markah 509. Terdapat sepuluh laluan proses yang dinilai bagi proses pembuatan asid asetik dengan laluan proses pengoksidaan etanol dengan markah 180 dinilai sebagai laluan proses yang paling selamat manakala laluan proses pengoksidaan etana dengan markah 402 sebagai yang paling berisiko. Keputusan yang diperoleh daripada ujian penghapusan pemarkahan subjektif dan juga kajian kes yang telah dilakukan menunjukkan keupayaan GRAND dalam mencapai objektifnya serta dapat diaplikasikan dengan efektif dalam penilaian keselamatan dalam industri petrokimia.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xiv
	LIST OF ABBREVIATIONS	xviii
	LIST OF SYMBOLS	XX
	LIST OF APPENDICES	xxii
1	INTRODUCTION	1
	1.1 Research Background	1
	1.2 Problem Statement	2
	1.3 Objectives of Study	4
	1.4 Scopes of Study	4
	1.5 Research Contributions	5
2	LITERATURE REVIEW	6
	2.1 Introduction	6

2.2 A Review on Inherent Safety Assessment Methods	9
2.2.1 Index-based Approach	9
2.2.2 Computer-aided Approach	16
2.2.3 Integration with Statistical Analysis Approach	18
2.2.4 Graphical Approach	19
2.2.5 Other Safety Assessment Approach	20
2.3 Research Gap for Inherent Safety Assessment	25
2.3.1 Index-based Approach	25
2.3.2 Computer-aided Approach	26
2.3.3 Integration with Statistical Analysis Approach	26
2.3.4 Graphical Approach	27
2.3.5 Other Inherent Safety Assessment Methods	27
2.3.6 Conclusion on Research Gaps	28
2.4 A Review on Numerical and Graphical Descriptive Technique (GRAND)2.4.1 Introduction to Numerical and Graphical	28 28
Descriptive Technique (GRAND) 2.4.2 Parameters Involved	29
2.4.2.1 Chemical Safety Parameters	30
2.4.2.2 Process Condition Safety Parameters	32
2.4.3 Method Used for Scoring Purposes	33
2.4.4 Focused Industry – Petrochemical Industry	36
2.4.4.1 Introduction	36
2.4.4.2 Accidents Related to Petrochemical	
Industries	37
2.4.4.3 Manufacturing Processes for Case Study	38
METHODOLOGY	45
3.1 Introduction	45
3.2 Development of Numerical and Graphical Descriptive (GRAND) Method	47
3.2.1 Identify Parameters Involved in GRAND	47
3.2.2 Data Collection	48
3.2.3 Development of Logistic Function for GRAND	49

3

3.2.3.1 Construction of Cumulative Curve	50
3.2.3.2 Application of m and k Values to Logistic Function General	
Equation 3.2.3.3 Refine m and k Values According to the Data Minimum and Maximum	51
Boundary 3.2.3.4 Apply the New m and k Values to Logistic Function General	60
Equation	62
3.2.4 Method Verification: Gap Elimination Test	70
3.2.5 Development of GRAND Total Score and GRAND Ranking Curve	75
3.2.5.1 GRAND Total Score	75
3.2.5.2 GRAND Ranking Curve	77
3.2.6 Inherent Safety Assessment for Petrochemical	
Industry Case Study	78
RESULTS AND DISCUSSION	79
4.1 Introduction	79
4.2 Method Validation Results: Gap Elimination Test	79
4.2.1 GRAND Validation through Comparison	
with PIIS Method 4.2.2 GRAND Validation through Comparison	80
with ISI Method	93
4.3 Case Study	96
4.4 Methyl Methacrylate (MMA) Manufacturing Process	98
4.4.1 Chemical Safety Assessment	98
4.4.2 Process Safety Assessment	100
4.4.3 GRAND Total Score and Ranking	103
4.4.4 Results Comparison with Other Methods	104
4.5 Acetic Acid Manufacturing Process	105
4.5.1 Chemical Safety Assessment	105
4.5.2 Process Safety Assessment	108
4.5.3 GRAND Total Score and Ranking	111
4.5.4 Results Comparison with Other Method	114
CONCLUSIONS AND RECOMMENDATIONS	115
5.1 Introduction	115

5.2 Conclusions	117
5.3 Recommendations	118
REFERENCES	120

Appendices A-F

х

126-144

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Inherent Safety Techniques	7
2.2	Summary of Review on Inherent Safety Assessment Methods	22
2.3	Hazard Rating Index: Reactivity	31
2.4	Application of Logistic Function	35
2.5	MMA Manufacturing Process Routes	39
2.6	Acetic Acid Manufacturing Process Routes	43
3.1	Summary of Values to be Measured for Every Parameter in GRAND	48
3.2	Parameters and the Data Sources	48
3.3	Extracted Mean and Cumulative Slope Values	51
3.4	Maximum and Minimum Values Obtained from Data	61
3.5	Final k and m Value Used in Logistic Functions	62
3.6	Values Used in Gap Elimination Test for Both Methods	72

3.7	Score Ranges and Its Values	74
3.8	Normalization of GRAND Score	75
4.1	Score Differences in Inter-Boundary Cases between PIIS and GRAND	81
4.2	Score Differences in Inter-Boundary Cases between ISI and GRAND	93
4.3	Score Differences in Intra-Boundary Cases between PIIS and GRAND	95
4.4	GRAND Chemical Safety Assessment Results for MMA Manufacturing Process Routes	98
4.5	GRAND Process Condition Safety Assessment Results for MMA Manufacturing Process Routes	100
4.6	GRAND Total Score for MMA Manufacturing Process Routes	103
4.7	Comparison between GRAND Method and PIIS Method in Assessing MMA Manufacturing Routes	104
4.8	GRAND Chemical Safety Assessment Results for Acetic Acid Manufacturing Process Routes	106
4.9	GRAND Process Condition Safety Assessment Results for Acetic Acid Manufacturing Process Routes	108
4.10	GRAND Total Score for Acetic Acid Manufacturing Process Routes	112
4.11	Comparison between GRAND Method and i-Safe Method in Assessing Acetic Acid Manufacturing Routes	114

xii

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE	
2.1	Hierarchy of Control	8	
3.1	Flow Chart of Research Methodology	46	
3.2	Initial GRAND for Flammability Parameter	53	
3.3	Initial GRAND for Explosiveness Parameter	54	
3.4	Initial GRAND for Toxicity Parameter	54	
3.5	Initial GRAND for Reactivity Parameter	55	
3.6	Initial GRAND for Temperature Parameter (T > 25° C)	56	
3.7	Initial GRAND for Temperature Parameter (T < 25° C)	57	
3.8	Initial GRAND for Pressure Parameter	58	
3.9	Initial GRAND for Heat of Reaction Parameter (>0kJ/mol)	59	
3.10	Initial GRAND for Heat of Reaction Parameter (>0kJ/mol)	59	
3.11	Initial GRAND for Process Inventory Parameter	60	

3.12	Finalized Numerical and Graphical Descriptive (GRAND) for Flammability Parameter	63
3.13	Finalized Numerical and Graphical Descriptive (GRAND) for Explosiveness Parameter	64
3.14	Finalized Numerical and Graphical Descriptive (GRAND) for Toxicity Parameter	65
3.15	Finalized Numerical and Graphical Descriptive (GRAND) for Reactivity Parameter	66
3.16	Finalized Numerical and Graphical Descriptive (GRAND) for Temperature Parameter)	67
3.17	Finalized Numerical and Graphical Descriptive (GRAND) for Pressure Parameter	68
3.18	Finalized Numerical and Graphical Descriptive (GRAND) for Heat of Reaction Parameter	69
3.19	Finalized Numerical and Graphical Descriptive (GRAND) for Process Inventory Parameter	70
3.20	GRAND Ranking Curve	77
4.1	Comparison between GRAND and PIIS for Inter- Boundary Case of Flammability Parameter	84
4.2	Comparison between GRAND and PIIS for Intra- Boundary Case of Flammability Parameter	85
4.3	Comparison between GRAND and PIIS for Inter- Boundary Case of Explosiveness Parameter	86
4.4	Comparison between GRAND and PIIS for Intra- Boundary Case of Explosiveness Parameter	86
4.5	Comparison between GRAND and PIIS for Inter- Boundary Case of Toxicity Parameter	87
4.6	Comparison between GRAND and PIIS for Intra- Boundary Case of Toxicity Parameter	88

4.7	Comparison between GRAND and PIIS for Inter- Boundary Case of Temperature Parameter	89
4.8	Comparison between GRAND and PIIS for Intra- Boundary Case of Temperature Parameter	90
4.9	Comparison between GRAND and PIIS for Inter- Boundary Case of Pressure Parameter	91
4.10	Comparison between GRAND and PIIS for Intra- Boundary Case of Pressure Parameter	91
4.11	Comparison between GRAND and PIIS for Inter- Boundary Case of Process Inventory Parameter	92
4.12	Comparison between GRAND and PIIS for Intra- Boundary Case of Process Inventory Parameter	93
4.13	GRAND Root-Cause Analysis for MMA Case Study – Flammability Parameter	99
4.14	GRAND Root-Cause Analysis for MMA Case Study – Explosiveness Parameter	100
4.15	GRAND Root-Cause Analysis for MMA Case Study – Temperature Parameter	101
4.16	GRAND Root-Cause Analysis for MMA Case Study – Heat of Reaction Parameter	102
4.17	GRAND Root-Cause Analysis for MMA Case Study – Pressure Parameter	102
4.18	GRAND Ranking Curve: MMA Manufacturing Route	104
4.19	GRAND Root-Cause Analysis for Acetic Acid Case Study Flammability Parameter	107
4.20	GRAND Root-Cause Analysis for Acetic Acid Case Study Explosiveness Parameter	108
4.21	GRAND Root-Cause Analysis for Acetic Acid Case Study Temperature Parameter	110

4.22	GRAND Root-Cause Analysis for Acetic Acid Case Study Pressure Parameter	110
4.23	GRAND Root-Cause Analysis for Acetic Acid Case Study Process Inventory Parameter	111
4.24	GRAND Ranking Curve: Acetic Acid Manufacturing Routes	113

LIST OF ABBREVIATIONS

ACGIH	-	American Conference of Governmental Industrial Hygienists
AP	-	Acidification Potential
ATP	-	Aquatic Toxicity Potential
BTX	-	Benzene, Toluene, Xylene
CI	-	Cumulative Index
CSCI	-	Conventional Safety Cost Index
CSTS	-	Chemical Safety Total Score
DI	-	Damage Index
EDP _{i,j}	-	Effective Dangerous Property
F&EI	-	Dow Fire and Explosion Index
FET	-	Flammability, Explosiveness and Toxicity
GRAND	-	Numerical and Graphical Descriptive
GWP	-	Global Warming Potential
HI	-	Hazard Index
HTPE	-	Human Toxicity Potential by Inhalation or Dermal Exposure
HTPI	-	Human Toxicity Potential by Ingestion
I2SI	-	Integrated Inherent Safety Index
IBI	-	Inherent Benign-ness Index
ICI	-	Individual Chemical Index
IDEF0	-	Type-zero Method of Integrated DEFinition Language
IOHI	-	Inherent Occupational Health Index
IRA	-	Inherent Risk Assessment
iRET	-	Integrated Risk Estimation Tool
ISCI	-	Inherent Safety Cost Index
ISI	-	Inherent Safety Index
ISPI	-	Inherent Safety Potential Index

LPG	-	Light Petroleum Gas
LSR	-	Light Straight Run
LEL	-	Lower Explosive Limit
MF	-	Material Factor
MMA	-	Methyl Methacrylate
MSDS	-	Material Safety Data Sheet
NFPA	-	National Fire and Protection Agency
OCI	-	Overall Chemical Index
ODP	-	Ozone Depletion Potential
ORI	-	Overall Reaction Index
OSI	-	Overall Safety Index
PCA	-	Principal Component Analysis
PCOP	-	Photochemical Oxidation Potential
PHCI	-	Process and Hazard Control Index
PIIS	-	Prototype Index for Inherent Safety
PoD _{ij}	-	Potential of Danger
PRI	-	Process Route Index
PSI	-	Process Stream Index
PSTS	-	Process Safety Total Score
R&D	-	Research and Development
RTHI	-	Reaction Temperature Hazard Index
SAC	-	Safety Assessment Curve
SAW	-	Simple Additive Weighing
SHE	-	Safety, Health and Environmental
SHI	-	Safety/Hazard Indices
SWeHI	-	Safety Weighted Hazard Index
TCI	-	Total Chemical Index
TLV	-	Threshold Limit Value
TLV-STEL	-	Threshold Limit Value Short-term Exposure Limit
TORCAT	-	Toxic Release Consequence Analysis Tool
TTP	-	Terrestrial Toxicity Potential
UEL	-	Upper Explosive Limit
WCI	-	Worst Chemical Index
WRI	-	Worst Reaction Index

LIST OF SYMBOLS

%Yield	-	Percentage Yield
°C	-	Degree Celsius
А	-	Credits due to Control Measures and Safety Arrangements Made to Counter the Undesirable Situations
ACH	-	Acetone cyanohydrin based route
Atm	-	atmospheric pressure
В	-	Quantitative Measure of the Damage that may be caused by a unit or plant
B1	-	Damage due to Fire and Explosion
B2	-	Damage due to Toxic Release and Dispersion
C2/MP	-	Ethylene via methyl propionate based route
C2/PA	-	Ethylene via propionaldehyde based route
C3	-	Propylene based route
EXP	-	Explosiveness
F1	-	General Process Hazard Factor
F2	-	Special Process Hazard Factor
FL	-	Flammability
H _R	-	Heat of Reaction
i-C4	-	Isobutylene based route
\mathbf{I}_{HH}	-	Index for Health Hazards
$I_{\rm PPH}$	-	Index for Physical and Process Hazards
kJ	-	kilo Joule
m _{ij}	-	Relevant Mass
Р	-	Pressure
PI	-	Process Inventory
Pi	-	Value for Every Parameter

ppm	-	Parts per Million
REAC	-	Reactivity
$\mathbf{S}_{\mathrm{EXP}}$	-	Score for Explosiveness Parameter
\mathbf{S}_{FL}	-	Score for Flammability Parameter
\mathbf{S}_{HR}	-	Score for Heat of Reaction Parameter
SP	-	Score for Pressure Parameter
\mathbf{S}_{PI}	-	Score for Process Inventory Parameter
S _R	-	Score for Reactivity Parameter
ST	-	Score for Temperature Parameter
S _{TOX}	-	Score for Toxicity Parameter
Т	-	Temperature
TBA	-	Tertiery butyl alcohol based route
TOX	-	Toxicity

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	MMA Manufacturing Routes Chemical Safety Parameters Data	126
В	MMA Manufacturing Routes Process Condition Safety Parameters Data	128
С	Acetic Acid Manufacturing Routes Chemical Safety Parameters Data	129
D	Acetic Acid Manufacturing Routes Process Condition Safety Parameters Data	130
Е	Cumulative Curve Frequency Data	131
F	Sample Calculation of GRAND Application	140

CHAPTER 1

INTRODUCTION

1.1 Research Background

Advanced technologies as well as economic achievements in modern development brought by petrochemical industries is one of the main factors that helps in upgrading human lifestyle throughout the world. However, it is not surprising that serious safety problems occur from their operations. Equipment malfunction as well as human errors are well-known as major accidents causes in all industries. Many strategies have been introduced in order to reduce or minimizing their impacts. However, it is impossible for operators to continuously maintain an error free performance all day long, throughout their work-lifetime. Thus, plant should be built so that they are user-friendly and able to endure deviation from ideal work routine by operators and equipment failures without serious impacts on safety, output or efficiency (Kletz and Amyotte, 2010).

Since the disastrous explosion in Flixborough in 1974 which causing 28 fatalities, there have been many papers produced on modes of preventing similar incidents from occurring again (Kletz and Amyotte, 2010). Most of the papers suggested the need for additional installation of more and better protective equipment such as gas detectors, fire protection and firefighting equipment, trips and alarms, scrubbers and flare stacks and so on. However, the equipment addition although necessary is also expensive and complex. Thus, plants should be designed so that small amounts of hazardous materials is used so that it does not matter if it all leaks or use safer materials instead of the hazardous ones.

Another approach is to use the hazardous materials at lower operating conditions in order to avoid the hazard problems rather than solving the hazard problems resulting to an inherently safer plants which are more cost efficient and more controllable. Although avoiding hazards plays a major role in designing a user-friendly plant, it is also important to identify and understand hazards posed by the process. According to the hierarchy of controls (Kletz and Amyotte, 2010), avoiding hazards comes after identifying and understanding the hazards which can be achieved through hazards assessment. Many methods had been developed in order to assess inherent safety performance of a process during process design stage for example the Prototype Index for Inherent Safety (PIIS) (Edwards and Lawrence, 1993), Inherent Safety Index (ISI) (Heikkila, 1999), SHE Method (Koller *et al.*, 2000), i-Safe (Palaniappan *et al.*, 2002a, b) and also Inherent Chemical Process Properties Data (Hassim and Ali, 2009).

1.2 Problem Statement

As mentioned previously, plants should be built so that they are user-friendly and able to prevent accidents from happens. Process safety evaluation during the very early design stage will assist in selecting the safer process route among several alternatives. The route with less hazardous chemicals and operating conditions is obviously will result in inherently safer and user-friendly plant. Most current safety assessment methods for evaluation of process design stage are mostly index-based method such as the PIIS (Edwards and Lawrence, 1993), ISI (Heikkila, 1999), SHE Method (Koller et al., 2000), i-Safe (Palaniappan et al., 2002a, b) and also Inherent Chemical Process Properties Data (Hassim and Ali, 2009). Index-based methods are attractive for inherent safety assessment due to their ability to be used during early process design stage in which there are limited amount of data available for evaluation. In index-based method, related factors to the process route is reduced to one quantitative factor, thus enables this approach to be used for decision making (Srinivasan and Nhan, 2008). Index-based method is attractive for usage in the industry due to this simplicity (Gupta and Edwards, 2003). Index-based method experienced many shortcomings as highlighted by Srinivasan and Nhan (2008) and one of them is subjective scaling. Subjective scaling is scaling by dividing physical or chemical properties into subjective ranges and each range is assigned scores according to the authors' judgment for example dividing the value range into ten equal sub-ranges as used in Lawrence (1996). This implies that all chemical or physical values in that particular sub-ranges possessed the same level of hazard when in actual truth that is not the case. Another form of subjective scaling is discontinuity at the sub-range boundary (Gupta and Edwards, 2003). Usually the difference between lower boundary of a sub-range and upper boundary of another sub-range is only one value away. Since the score are assigned to each sub-range instead of each values, process which is one value higher than another process may be interpreted as possessing higher hazard which in reality both process may have similar level of hazard.

Inherent Benign-ness Index (IBI) (Srinivasan and Nhan, 2008) and the Hierarchical Fuzzy Model for the evaluation of inherent safety (Gentile, 2004) are two examples of inherent safety assessment methods that eliminates the shortcomings of index-based method in their methods. In order to eliminate the shortcomings of indexbased method, the IBI incorporates a multivariate statistical approach known as Principal Component Analysis (PCA) while the Hierarchical Fuzzy Model incorporates fuzzy logic approach. Although both methods eliminates the shortcoming of index-based method successfully, they have complex development step. Execution of inherent safety assessment can also be done using process design simulator for example HYSYS software as incorporated by Shariff et al. (2006) in Integrated Risk Estimation Tool (iRET). Other methods that follows the same execution approach as iRET is Process Route Index (PRI) (Leong and Mohd Shariff, 2009), Toxic Release Consequence Analysis Tool (TORCAT) (Mohd Shariff and Zaini, 2010) and also Process Stream Index (PSI) (Mohd Shariff et al., 2012). Incorporation of process design simulator is helpful in designing inherently safer design process. However, it is not suitable to be used in assessing inherent safety during research and design stage due to limited amount of data available.

Instead of using a complex execution method, this research proposed an inherent safety assessment method which incorporates logistic function in its execution which is simpler and suitable to be used during research and development stage. Incorporation of logistic function also able to eliminate the subjective scaling problem that exists in the index-based method.

1.3 Objectives of Study

The objective of this research is to develop an inherent safety assessment technique for assessment during research and development (R&D) stage. There are two sub-objectives that need to be fulfilled in order to achieve the main objective.

- 1. To develop a numerical safety assessment technique which evaluates safety parameters without the shortcomings of subjective scaling.
- 2. To construct a graphical representation of the assessment results for root-cause analysis of the process.

1.4 Scopes of Study

In order to achieve the main objective of this study, there are four scopes that will be attended.

- 1. Review the current inherent safety assessment methods on the approaches used as well as the parameters incorporated.
- Construct numerical safety assessment technique focusing on petrochemical processes chemical and operational data based on logistic function.
- 3. Incorporates chemical safety and process condition safety parameters available for assessment during research and development stage in the assessment technique developed.

4. Applying the proposed inherent safety assessment on several case studies of petrochemical processes during research and development stage to illustrate the effectiveness of the new technique.

1.5 Research Contributions

The key specific contributions of this work are summarized as follows:

- 1. Development of a new inherent safety evaluation technique for assessment in petrochemical industry.
- 2. Application of logistic functions for hazard scoring purposes to overcome subjective scaling issues.
- 3. Graphical representation of assessment results for root-cause analysis down to the chemical substance level.
- 4. The proposed technique can be tailored to company's own data.
- 5. The proposed method is useful for quick yet comprehensive comparison of alternative processes.
- 6. This method is applicable for inherent safety evaluation during research and development (R&D) stage which requires limited process data.

REFERENCES

- Al-Mutairi, E. M., Suardin, J. A., Mannan, M. S., and El-Halwagi, M. M. (2008). An Optimization Approach to the Integration of Inherently Safer Design and Process Scheduling. *Loss Prevention in the Process Industries*. 21, 543-549.
- Al-Qahtani, K. Y., and Elkamel, A. (2010). Planning and Integration of Refinery and Petrochemical Operations. Weinhem, Germany: Wiley-VCH Verlag GmbH & Co.
- Althuwaynee, O. F., Pradhan, B., Park, H-J., and Lee, J. H. (2014). A Novel Ensemble Bivariate Statistical Evidential Belief Function with Knowledge-based Analytical Hierarchy Process and Multivariate Statistical Logistic Regression for Landslide Susceptibility Mapping. *Catena*. 114, 21-36.
- Andraos, J. (2013). Safety/Hazard Indices: Completion of a Unified Suite of Metrics for the Assessment of "Greenness" for Chemical Reactions and Synthesis Plans. Organic Process Research & Development. 17, 175-192.
- Balakrishnan, N., Al-Hussaini, E. K., and Saleh, H. M. (2011). Recurrence Relations for Moments of Progressively ensored Order Statistics from Logistic Distribution with Applications to Inference. *Journal of Statistical Planning and Inference*. 141, 17-30.
- Belov, P. (1970). Fundamentals of Petroleum Chemicals Technology. Moscow: Mir Publishers.
- Chauvel, A., and Lefebvre, G. (1989). *Petrochemical Processes Technical and Economic Characteristics*. (2nd ed.) Paris: Gulf Publishing Company.
- Crowl D. A., and Louvar, J. F. (2002). *Chemical Process Safety Fundamentals with Applications*. (2nd ed.). New Jersey: Prentice Hall.

- Ding, Y-P., Yao, H-X., Tang, X-L., He, H-W., Shi, H-F., Lin, L., Li, M., Chen, S., Chen, J., and Wang, H-J. (2012). An Epidemiology Study of Bronchial Asthma in the Li Ethnic Group in China. *Asian Pacific Journal of Tropical Medicine*. 157-161.
- Dow Chemical Company. (1987). *DOW's Fire & Explosion Index Hazard Classification Guide*. (6th ed.). New York: American Institute of Chemical Engineers.
- Edwards, D. W., and Lawrence, D. (1993). Assessing the Inherent Safety of Chemical Process Routes: Is there a Relation Between Plant Costs and Inherent Safety?. *Trans IchemE*. 71(B), 252-258.
- Felder, R. M., and Rousseau, R. W. (2000). Elementary Principles of Chemical Processes. (3rd ed.). USA: John Wiley & Sons, Inc.
- Gentile, M. (2004). *Development of a Hierarchical Fuzzy Model for the Evaluation of Inherent Safety*. Philosophy Doctor. Texas A&M University, Texas.
- Green, D. W.,and Perry, R. H. (2008). *Perry's Chemical Engineer's Handbook*. (8th ed.). China: The McGraw Hill.
- Gupta, J. P., and Edwards, D. W. (2003). A Simple Graphical Method for Measuring Inherent Safety. *Hazardous Materials*. 104,15-30.
- Hahn, A. V. (1970). The Petrochemical Industry Market and Economics. U.S.A: McGraw-Hill Book Company.
- Halim, I., Carvalho, A., Srinivasan, R., Matos, H. A., and Gani, R. (2011). A Combined Heuristic and Indicator –based Methodology for Design of Sustainable Chemical Process Plants. *Computers and Chemical Engineering*. 35, 1343-1358.
- Hassim, M. H., and Ali, M. W. (2009). Screening Alternative Chemical Routes Based On Inherent Chemical Process Properties Data: Methyl Methacrylate Case Study. *The Inst. Of Engineers, Malays.* 70,2-10.
- Hassim, M. H., and Hurme, M. (2010). Inherent Occupational Health Assessment during Process Research and Development Stage. Loss Prevention in the Process Industries. 23, 127-138.

- Heikkila, A. M. (1999). Inherent Safety in Process Plant Design an Inde-based Approach. Doctor Philosophy. Helsinki Universiti of Technology.
- Hendershot, D. C. (1997). Measuring Inherent Safety, Health and Environmental Characteristics Early in Process Development. *Process Safety Progress*. 16(2), 78-78.
- Huang, M-K., Hsu, T-F., Chiu, Y-H., Chiang, S-C., Kao, W-F., Yen, D. H-T., and Huang M-S. (2013). Risk Factors for Acute Kidney Injury in the Elderly Undergoing Contrast-enhanced Computed Tomography in the Emergency Department. *Journal of the Chinese Medical Association*. 76, 271-276.
- Hwang, S. P. (2004). Dynamic Time Series Analysis Using Logistic Function.Philosophy Doctorate. North Carolina State University.
- Kandiah, N., Mak, E., Ng, A., Huang, S., Au, W. L., Sitoh, Y. Y., and Tan, L. C. S. (2013). Cerebral White Matter Hyperintensity in Parkinson's Disease: A Major Risk Factor for Mild Cognitive Impairment. *Parkinsonism and Related Disorders*. 19, 680-683.
- Khan, F. I., and Amyotte, R. (2005). I2SI: A Comprehensive Quantitative Tool for Inherent Safety and Cost Evaluation. *Loss Prevention in the Process Industries*. 18, 310-326.
- Khan, F. I., Husain, T., and Abbasi, S. A. (2001). Safety Weighted Hazard Index (SWeHI) A New, User Friendly Tool for Swift yet Comprehensive Hazard Identification and Safety Evaluation in Chemical Proces Industries. *Trans IchemE*. 79, 65-80.
- Kletz, T., and Amyottes, P. (2010). Process Plants A Handbook for Inherently Safer Design. (2nd ed.).USA: Taylor and Francis Group.
- Koller, G., Fischer, U., and Hungerbuhler, K. (2000). Assessing Safety, Health, and Environmental Impact Early during Process Development. *Ind. Eng. Chem. Res.* 39, 960-972.
- Koller, G., Fischer, U., and Hungerbuhler, K. (2001). Comparison of Methods Suitable for Assessing the Hazard Potential of Chemical Processes during Early Design Phases. *Trans IchemE*. 79, 157-166.

- Larsen, R. J., and Marx, M. L. (2001). *An Introduction to Mathematical Statistics and Its Applications*. (3rd ed.). New Jersey, U.S.A: Prentice-Hall.
- Lawrence, D. (1996). *Quantifying Inherent Safety of Chemical Process Routes*. Philosophy Doctor. Loughborough University of Technology.
- Leong, C. T., and Mohd Shariff, A. (2009). Process Route Index (PRI). TO Assess Level of Explosiveness for Inherent Safety Quantification. Loss Prevention in the Process Industries. 22, 216-221.
- Li, H., and Sun, J. (2011). Empirical Research of Hybridizing Principal Component Analysis with Multivariate Discriminant Analysis and Logistic Regression for Business Failure Prediction. *Expert System with Applications*. 38, 6244-6253.
- Menotti, A., Puddu, P. E., Lanti, M., Maiani, G., and Fidanza, F. (2013). Cardiovascular Risk Factors Predict Survival in Middle-aged Men during 50 Years. *European Journal of Internal Medicine*. 24, 67-74.
- Mohd Shariff, A., and Leong, C. T. (2009). Inherent Risk Assessment-A New Concept to Evaluate Risk in Preliminary Design Stage. *Process Safety and Environmental Protection*. 87, 371-376.
- Mohd Shariff, A., and Zaini, D. (2010). Toxic Release Consequence Analysis Tool (TORCAT) for Inherently Safer Design Plant. *Hazardous Materials*. 182, 394-402.
- Mohd Shariff, A., Leong, C. T., and Zaini, D. (2012). Using Process Stream Index (PSI) to Assess Inherent Safety Level during Preliminary Design Stage. Safety Science. 50, 1098-1103.
- Mohd Shariff, A., Rusli, R., Leong, C. T., Radhakrishnan, V. R., and Buang, A. (2006). Inherent Safety Tool for Explosion Consequences Study. *Loss Prevention in the Process Industries.* 19, 409-418.
- Murakami, S., Kawakubo, S., Asami, Y., Ikaga, T., Tamaguchi, N., and Kaburagi, S. (2011). Development of a Comprehensive City Assessment Tool: CASBEE-City. *Building Research & Information*. 39(3), 195-210.

- NFPA Hazard Rating System (2013). Retrieved December 4, 2012, from http://www.ehs.neu.edu/laboratory_safety/general_information/nfpa_hazard_ra ting/.
- Nivolianitou, Z., Konstandinidou, M., and Michalis, C. (2006). Statistical Analysis of Major Accidents in Petrochemical Industry Notified to the Major Accident Reporting System (MARS). *Hazardous Materials*. 137(A). 1-7.
- Osu, B. O. (2010). Application of Loigistic Function to the Risk Assessment of Financial Asset Returns. *Journal of Modern Mathematics and Statistics*. 4(1), 7-10.
- Palaniappan, C., Srinivasan, R., and Tan, R. (2002a). Expert System for the Design of Inherently Safer Processes. 1. Route Selection Stages. *Ind. Eng. Chem. Res.* 41, 6698-6710.
- Palaniappan, C., Srinivasan, R., and Tan, R. (2002b). Expert System for the Design of Inherently Safer Processes. 2. Flowsheet Development Stage. *Ind. Eng. Chem. Res.* 41, 6711-6722.
- Palaniappan, C., Srinivasan, R., and Tan, R. (2004). Selection of Inherently Safer Process Routes: A Case Study. *Chemical Engineering and Processing*. 43, 647-653.
- Pedersen, J., Liu, F., Alfarraj, F., and Ngondo, H. (2013). Examining Disease Risk Factors by Mining Publicly Available Information. *Procedia Computer Science*. 17, 48-53.
- Pohanish, R. P. (2004). *Haz Mat Data for First Response, Transportation, Storage, and Security.* (2nd ed.). USA: John Wiley & Sons, Inc.
- Rosenfeld, P. E., and Feng, L. G. H. (2011). Risks of Hazardous Wastes. Elsevier Inc.
- Srinivasan, R., and Nhan, N. T. (2008). A Statistical Approach for Evaluating Inherent Benign-ness of Chemical Process Routes in Early Design Stages. *Process Safety* and Environmental Protection. 86, 163-174.
- Suardin, J., Mannan, M. S., and El-Hawagi, M. (2007). The Integration of Dow's Fire and Explosion Index (F&EI) into Process Design and Optimization to Achieve Inherently Safer Design. *Loss Prevention in the Process Industries*. 20, 79-90.

- Sugiyama, H., Fischer, U., Hungerbuhler, K., and Hirao, M. (2008a). Decision Framework for Chemical Process Design Including Different Stages of Environmental, Health, and Safety Assessment. *AlChE*. 54(4), 1037-1053.
- Sugiyama, H., Hirao, M., Fischer, U., and Hungerbuhler, K. (2008b). Activity Modeling for Integrating Environmental, Health and Safety (EHS) Consideration as a New Element in Industrial Chemical Process Design. *Chemical Engineering of Japan.* 41, 884-897.
- The INSIDE Project Team Partners. (2001). *The INSET Toolkit-Inherent SHE Evaluation Tool.*
- Tyler, B. J. (1985). Using the Mond Index to Measure Inherent Hazards. *Plant/Operations Progress.* 4(3), 172-175.
- Weiss, G. (1986). *Hazardous Chemical Data Book*. (2nd ed.). USA: Noyes Data Corporation.
- Xu, W., Jing, S., Yu, W., Wang, Z., Zhang, G., and Huang, J. (2013). A Comparison between Bayes Discriminant Analysis and Logistic Regression for Prediction of Debris Flow in Southwest Sichuan, China. *Geomorphology*. 201, 45-51.
- Yaws, C. L., Sheth, S. D., and Han, M. (1997). *Handbook of Chemical Compound Data for Process Safety*. Elsevier Inc.