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ABSTRACT 

Osteoporosis disease makes bone fragile and weak to withstand against load 

and bodyweight. Crack initiation and damage might occur depends on different 

morphological indices and types of load impose on trabecular bone. Fatigue analysis 

with strain-based method is applied for bovine trabecular bone with three different 

morphological indices to investigate correlation between fatigue life results and bone 

morphology. Two different analyses were performed, the first was static and the 

second was dynamic analysis. Axial load imposed on vertical, 45-degree and 

horizontal samples. Plastic strain in vertical sample initiated at 30% of total and reach 

to 5.97e-4 at 40% however, at 45-degree and horizontal initiated at 20% and 10% 

with values of 0.00479 and 0.211 respectively. Then fatigue analysis was performed 

on samples and S-N curve extracted. Results shows that fatigue life of vertical sample 

at high load amplitude (40% of total load) is 12262 cycles, however this value in 45-

degree and horizontal samples decrease drastically to 357 and 5 cycles respectively. 

In the various morphological indices, BV/TV and BS/TS are counted as crucial factor 

in correlation between fatigue life and bone morphology. Vertical sample include of 

less porosity than 45-degree and horizontal, and because of this reason stress 

localized and plastic strain value in vertical sample value is far below than other two. 

Fatigue life decrease when porosity of structure increases. Plastic strain and high 

stresses had been appeared in arch and rod-like of trabeculae. 
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ABSTRAK 

Osteoporosis menjadikan tulang semakin rapuh dan lemah untuk menahan 

risiko beban dan berat badan. Permulaan keretakan dan kerosakan mungkin berlaku 

bergantung kepada yang perbezaan bentuk morfologi dan jenis beban yang dikenakan 

ke atas tulang trabekular. Analisis kelesuan dengan kaedah berasaskan keterikan 

digunakan untuk tulang trabekular sapi dengan tiga berbeza bentuk morfologi untuk 

menyiasat hubungan antara keputusan hayat lesu dan morfologi tulang. Dua analisis 

yang berbeza telah dilakukan; yang pertama adalah statik dan yang kedua adalah 

analisis dinamik. Beban paksi telah dikenakan ke atas sampel pada arah menegak, 45 

darjah dan mendatar. Terikan plastik pada sampel arah menegak bermula pada 30% 

daripada jumlah beban dan mencapai ke 5.97e-4 pada 40%. Walau bagaimanapun, 

pada arah 45 darjah dan mendatar, terikan plastic bermula pada 20% dan 10% dengan 

nilai 0.00479 dan 0.211. Kemudian, analisis kelesuan telah dijalankan ke atas 

kesemua sampel dan lengkung S-N di ekstrak. Hasil menunjukkan bahawa hayat lesu 

sampel arah menegak pada beban beramplitud maximum (40% daripada jumlah 

beban) adalah 12,262 kitaran, namun nilai ini berkurang secara drastik pada sampel 

arah 45 darjah iaitu 357 kitaran dan sampel mendatar dengan 5 kitaran. Dalam 

pelbagai bentuk morfologi, BV / TV dan BS / TS dikira sebagai faktor penting dalam 

hubungan antara hayat kelesuan dan morfologi tulang. Sampel arah menegak yang 

juga kurang keliangan berbanding sampel arah 45 darjah dan mendatar, menyebabkan 

tekanan lokal dan nilai terikan plastik jauh lebih rendah berbanding sampel lain. 

Hayat lesu berkurang dengan bertambahnya keliangan pada struktur tulang. Terikan 

plastik dan tegasan tinggi tampak di lengkung dan rod tulang trabekular. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

These days analysing parts of body is highlighted due to increasing of 

survival humanity.  Since there are movements in body, some parts such as bones, 

joints and muscles are involved in this investigation. Among such these parts, 

trabecular bones play an important role in skeleton structures for their duties. One of 

the most important duties of skeleton is tolerating body weight during physiological 

activities such as gait, walking, running and downstairs loading; but the point is, most 

percent of this loading is being withstood by especial structures inside the bones 

which is called trabecular bone (Spongy bone). For predicting life of the trabecular 

bone, some analysis should be considered which could be numerical, analytical and 

experimental analysis. In this study numerical analysis has been performed t predict 

fatigue life of trabecular bone subjected to axial loading. However, when femoral 

head part in vivo is subjected to bodyweight and physiological activities, because of 

its angle and load imposed on it, trabecular bone is faced with this type of load in 

various angle. In this analysis this angle is considered as vertical model, 45-degree 

and horizontal model. Stress analysis first is performed, then fatigue analysis and 

number of cycles to failure for trabecular bone is calculated This chapter covers the 

problem background, problem statement, objectives and scope of study. 
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1.2 Objectives 

i. To predict fatigue life of bone structure,  

ii. To analyse the fatigue behaviour of the Trabecular bone respect to 

physiological activity (Normal Walking), subjected to axial loading 

iii. To study relationship of morphology indices with fatigue life of bone 

structure. 

1.3 Problem Statement 

 Most of the researchers looking forward to find some methods for analysing 

bone structure by which can replace the artificial bone instead of the real one. These 

methods is used to apply mechanical properties obtained from experimental part to 

predict the fatigue life of bone structure and its behaviour respect to different 

physiological activities, then analyse the fatigue life in different anatomical sites to 

understand correlation between different morphological indices and fatigue life of 

trabecular bone. 

 

Considerably, trabecular bone makes useful contribution all over the body 

because of load tolerating duty. However, highly percent of stress distribution are 

tolerated by trabecular bone. The point of such research is to know, how the stresses 

due to physiological activities loads distribute over the bone and to what extend these 

stresses influence on fatigue life. Fatigue life prediction based on different anatomic 

sites and find correlation between different morphologies and fatigue life is highly 

demand in this project. 
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1.4 Scope of Project 

First scope of this project is to reconstruct the trabecular bone structure in 

effective quality to prepare it for mechanical analysis. Since there is high-tech system 

such as Micro-CT scanner, which assists to construct the complex structures by using 

especial software called Materialize mimic software. Mimic is able to have link with 

those images taken from Micro-CT scan and construct any 3D-complex structure 

such as trabecular bone which cause have trustworthy results in the pre-processing 

step in FE software that strongly influence in the final results. 

 

The second scope of this project is to fatigue analysis by using FE package. 

Researchers make their effort to use some methods to get their result such as 

experimental, analytical and numerical methods. In this project numerical analysis is 

selected to simulate fatigue life prediction. Experimental study of project is not 

inconsistency with numerical analysis; however most of the research is based on the 

experimental method and then being validated by numerical or analytical methods. In 

addition, numerical analysis with COMSOL Software will help to find required 

parameters in this project. In the next step this results will be validated by 

experimental test obtained from previous studies.  

 

Third scope of this project is to compare the fatigue behavior of trabecular 

bone with various anatomical sites with different morphological indices. Apply 

various parts of trabecular bone in body respect to different physiological activities 

and different morphological indices clear that to what extend bone indices influence 

on the whole structure and this is the way to get idea for construct idealize structure 

and use it in the body as artificial structure. 
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1.5 Significance of Project 

The first significance of this study is considering the mechanical properties in 

common physiological activities. Gait loading is known as one of the common 

activities that everyone is involved with it all the days; In addition, due to the fast life, 

common diseases among people are common such as obesity. Analysing fatigue life 

of trabecular bone based on average bodyweight in this decade, make it useful 

contribution for human being and their health, especially for those who suffered from 

obesity. 

 

The second significance of this study is to know to what extend various types 

of loading due to various daily activities strongly influence on the bone structures and 

which of them cause do damage more. Among various loading, cyclic loading and 

monotonic loading in the axial and torsional condition could be playing an important 

role to damage bone. 

 

Fatigue life prediction of trabecular bone and using FE package cause 

estimate the crack initiation and crack growth and its location based on strain 

accumulation analysis; there are current problems which should investigate according 

to the common physical activities. Osteoporotic fracture also is one of the famous 

diseases occurring due to the excessive loads on the bone. 
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