MOBILE DATA LOGGER FOR TEMPERATURE, HUMIDITY, AND ATMOSPHERIC ELECTRIC FIELD OBSERVATION

MOHD QAMARUL ARIFIN BIN RUSLI

A project report submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical - Power)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > JUNE 2014

To my dearest parents, Rusli Mohamed and Rokiah Che Draman, my dearest brothers and sister, my friends, whoever help and support me in the thesis

ACKNOWLEDGEMENT

Praised be to Allah for His blessings and giving me the strength along the challenging journey of completing this Master thesis writing, for without it, I would not have been able to come this far.

First and foremost, I would like to take this opportunity to express my deepest gratitude to my project supervisors, Dr Muhammad Abu Bakar Sidik who has persistently and determinedly assisted me during the whole course of this project. It would have been very difficult to complete this project without the enthusiastic support, insight and advice given by him.

Most thanks go to my fellow friends and those who kindly helped me understanding the topic of my research. Their efforts are truly appreciated. I also would like to acknowledge to my family and all my friends who are always there on my ups and down and always pray for me. And for those who give me support direct or indirectly to finish this project and throughout my semesters in UTM, thank you very much. May Allah bless all of you.

My fellow postgraduate students should also be recognized for their support. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful

ABSTRACT

The increasing of atmospheric electric field (AEF) in between the swarm and the earth ground have the correlation when lightning occurs with the forging of a cumulonimbus cloud. The lightning activities can be anticipated during the evolution of the atmospheric electric field. The observation for the AEF is usually taken away by using static immobile observation stations with high monetary value of equipment and installation especially for information acquisition. The main hurdle for the researchers is the collection of data saving system. The collections of experimental data are very crucial when it came in bulk or big size of the collected data. In this project a low cost mobile data logger device to record AEF magnitude, humidity, temperature and location coordinate is presented. The device system is designed based on Arduino UNO module and also Arduino 1.0.5 open source software for coding process. The development of low cost mobile data logger device technology for atmospheric field magnitude and recording are still few. It is one the great challenge to explore the new application of multiple implementation of sensors, GPS system and an SD Card for multiple type of detections, which is a cost-effective and low maintenance cost for data monitor and logging system. This diligence will contribute an extra method to meteorologists and researchers as they can monitor and aware any activity during the experimentation. The finding can be motivating the further research on utilizing a portable mobile data logger system as a guide for multi-use system.

ABSTRAK

Peningkatan medan elektrik beratmosfera (AEF) di antara awan dan tanah bumi mempunyai korelasi apabila kilat berlaku dengan awan komulonimbus. Aktiviti kilat boleh dijangkakan semasa evolusi medan elektrik atmosfera. Pemerhatian terhadap AEF biasanya diambil dengan menggunakan stesen yang tidak bergerak dengan nilai kos pembuatannya yang tinggi dari segi peralatan dan pemasangan terutama bagi perolehan maklumat atau data. Halangan utama untuk penyelidik adalah koleksi sistem penyimpanan data. Koleksi data eksperimen sangat penting ketika datang secara pukal atau saiz besar data yang dikumpul .Dalam projek ini kos rendah peranti penyimpanan data mudah alih untuk mencatat magnitud AEF, kelembapan ,suhu dan lokasi eksperimen dibentangkan. Sistem peranti ini direka bentuk berdasarkan modul Arduino UNO dan juga perisian Arduino 1.0.5 untuk proses pengkodan. Pembangunan peranti berkos rendah penyimpanan data mudah alih teknologi untuk magnitud bidang atmosfera dan rakaman masih sedikit. Ia adalah salah satu cabaran yang hebat untuk meneroka aplikasi baru pelaksanaan pelbagai sensor, sistem GPS dan memori kad untuk jenis berganda bagi pengesanan, yang merupakan kos efektif dan penyelenggaraan yang rendah untuk memantau data dan sistem penyelidikan. Usaha ini akan menyumbang kaedah tambahan kepada ahli kaji cuaca dan penyelidik kerana mereka boleh memantau dan mengetahui apa-apa aktiviti dalam uji kaji mereka. Dapatan ini boleh memberi motivasi penyelidikan lanjut mengenai menggunakan sistem simpanan data mudah alih sebagai panduan bagi pangkalan berbilang guna sistem.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE	
	DECLARATION		ii	
	DEL	DEDICATION		
	ACH	ACKNOWLEDGEMENT		
	ABS	TRACT	v	
	ABS	ABSTRAK		
	TAE	BLE OF CONTENTS	vii	
	LIST	Γ OF TABLES	ix	
	LIST	Г OF FIGURES	х	
	LIST OF ABBREVIATIONS		xiii	
	LIST	Г OF SYMBOLS	XV	
	LIST	Γ OF APPENDICES	xvi	
1	INTI	RODUCTION TO THE PROJECT	1	
	1.1	Introduction	1	
	1.2	Problem Statements	2	
	1.3	Research Objectives	2	
	1.4	Scope of Study	2	
	1.5	Significant of Study and Original Contribution	3	
	1.6	Outline of Thesis	3	
2	LITH	ERATURE REVIEW	5	
	2.1	Data Logging System	5	
	2.2	The GPS System	5	

	2.3	Surrounding Temperature and Humidity	7
	2.4	Atmospheric Electric Field	8
3	RESE	EARCH METHODOLOGY	9
	3.1	Introduction	9
	3.2	Methodology and Approach	10
	3.3	Component Overview and Selection	11
	3.4	Schematic Design	20
	3.5	Programming Code	25
	3.6	Hardware Production	27
4	RESU	JLT AND DISCUSSION	36
	4.1	Introduction	35
	4.2	Laboratory Experiments	35
	4.3	Field Experiment	42
	4.4	Discussion	46
5	CON	CLUSION	48
	5.1	Conclusion	48
	5.2	Suggestion and Improvement	48
REFERENCES			50

Appendices A - K

53

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	Input and output sections	20
3.2	SD Card Module properties	24
3.3	Component and Device	28

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
3.1	The flow of the project	10
3.2	Arduino Uno; front and back	12
3.3	Atmega328 information pins	12
3.4	Arduino Uno board information pin	13
3.5	Temperature sensor module (SN-TEMP-MOD)	14
3.6	Components on the Module	14
3.7	HR202 humidity sensor module	15
3.8	Components on humidity module board	15
3.9	SKM53 GPS module Starter Kit	16
3.10	The output of NMEA format is in sentences	16
3.11	BB-SD-0071 SD card breakout board	17
3.12	20x4 liquid crystal display	17
3.13	The axial-lead resistor on tapes	18
3.14	Parts of an LED	19
3.15	The connection between Temperature Sensor Module and	21
	Arduino Uno Board	
3.16	The connection between Humidity Sensor Module and	22
	Arduino Uno Board	
3.17	The connection between GPS Module and Arduino Uno	22
	Board	
3.18	The connection between SD Card Module and Arduino	23
	Uno Board	
3.19	The connection between LCD and Arduino Uno Board	24
3.20	Arduino Uno software Version 1.0.5 IDE	25

3.21	Flow chart of the main program	26
3.22	Subroutine of the main program	26
3.23	Breadboard connection of temperature	29
3.24	Breadboard connection of humidity sensor module	29
3.25	Breadboard connection of LCD	29
3.26	Breadboard connection of GPS module	29
3.27	Breadboard connection of SD card module	30
3.28	The overall connection on breadboard	30
3.29	The design is being tested outside	30
3.30	Copper board	30
3.31	Clean the copper board	31
3.32	PCB heat transfer machine	31
3.33	After etching process	31
3.34	PCB is drilled	31
3.35	C Code for LED blinking test	32
3.36	LED blinking	32
3.37	The C code and LCD	33
3.38	GPS device and reading from serial communication	33
3.39	Data storage from SD Card	34
3.40	Design by Using Solidworks software	34
4.1	Temperature vs Time graph	36
4.2	Humidity vs Time graph	36
4.3	Experimental setup	37
4.4	Setting from function generator	38
4.5	Injected Pulse from function generator on every 1ms	38
	interval	
4.6	Injected pulses in 1 minute duration logged to SD Card	38
4.7	Reading on one pulse	39
4.8	Injected Pulse from function generator on every 10ms	39
	interval	
4.9	Injected pulses in 1 minute duration logged to SD Card	40
4.10	Reading on one pulse	40
4.11	Injected Pulse from function generator on every 100ms	41

interval

4.12	Injected pulses in 1 minute duration logged to SD Card	41
4.13	Reading on one pulse	42
4.14	Sensors and data logger placement setup	43
4.15	The vehicle is moving in a complete cycle	43
4.16	A snapshot data from ms excel	44
4.17	Temperature and Humidity vs time for data logging	44
	experiment	
4.18	Location Tracking Map	45

LIST OF ABBREVIATIONS

AWS	_	Automatic Weather System
GPS	_	Global Positioning System
UAV	_	Unmanned Aeriel Vehicle
GPRS	_	General Packet Radio Service
SD Card	_	Security Digital Card
GLD360	_	Global Lightning Detection Network
LF/VF	_	Low-frequency Vascular Fluctuations
TLS200	_	Total Lightning Sensor
CG	_	Cloud to Ground Flashes
PV	_	Photovoltaic
I/O	_	Input output
PIC	_	Programmable Integrated Circuit
РСВ	_	Printed Circuit Board
WS	_	Wind Speed
WD	_	Wind Direction
RH	_	Relative Humidity
Р	_	Pressure
AT	_	Air Temperature
SS	_	space segments
CS	_	Control segments
US	_	user segments
LED	_	Light Emitting Diode
LCD	_	Liquid Crystal Display
NTC	_	Negative Temperature Coefficient
NMEA	_	NationalMarine Electronics Association

MISO	_	Master in Slave Out
SCK	_	System Clock
SS	_	Slave Select
MOSI	_	Master out Slave in

LIST OF SYMBOLS

^{o}C	_	degree celcius
$kV m^{-1}$	_	kilovolt per meter
μs	_	microsecond
%	_	percent
kb	_	kilobyte
V	_	Volt
\$	_	dollar
ms	-	milisecond

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A	Experiment 1 Data	61
В	Experiment 2 Data	62
С	Programming Code	63
D	Arduino Uno	64
Е	Arduino Uno Board Information Pin	65
F	Atmega328 Information Pins	66
G	The Project Flowchart	67
Н	Temperature Sensor Module	68
Ι	Humidity Sensor Module	69
J	SkyNav SKM53 GPS Module	70
Κ	SD Card Breakout Board Pin Configuration	71
L	Comparison of temperature and humidity between the market	72

CHAPTER 1

INTRODUCTION TO THE PROJECT

1.1 Introduction

Lightning activities have correlation with the forming of thundercloud where the thundercloud will increase the atmospheric electric field (AEF) in between the cloud and the earth. Observation regarding the development of AEF will lead a prediction of lightning activities close to the particular location. The observation becomes utmost important for countries with high isokraunic level. Usually the observation is carried out by using static immobile observation stations with high cost of equipment and installation such as computer, data acquisition, tower, and antenna. However, the fast moving forwards of technologies provide a possibility to develop an effective mobile AEF data logger with lower cost. Interestingly, mobile data logger for AEF measurement was not carried out intensively yet, especially when it was related to lightning activities. Meanwhile there are lots of works have been carried out regarding applications of sensors and data logger system in many fields of science or engineering research for instance in meteorological, geosciences, geophysics, aeronautic, and aerospace. In order to obtain a good data for performing analysis, critical aspect that should be considered in applying data logger system is the process of data recording. In the past, experimental data are being monitored and logged by using computer desktop. There are many constrain if the researchers want to use computer desktop or laptop because the power comsumption is very big and cannot be carried around because of the limited on supply power. Developers are trying to design a data logging system as small as possible, so that the system can fit the term of 'mobility'.

1.2 Problem Statements

Nowadays technology scene are seems overheated to some. Many designers are designing and developing a system that can contribute to human being. One of the field of research is in the atmospheric field measurement system. Many researchers are developing and improvise the atmospheric field detection system. The system can be static or dynamic. There are lot of designs related to dynamic system such as automatic weather system, Vaisala ceilometer, and rotating electric field mill. Meanwhile, the static usage to measure the atmospheric field are quite few. The main hurdle for the researcher is the data collection. The collections of experimental data are very crucial for researchers when it came in a bulk or big size of collected data. There are a lot of data logger have been designed, such as development of a low-cost system for temperature monitoring[1], an inexpensive open-source ultrasonic sensing system for monitoring liquid levels[2] and many others[3-6], but these design are only focusing on the usage of one or two sensors only at one time.

1.3 Research Objectives

The objectives to be achieved for the project are:

- 1. To design and develop a low cost mobile data logger system.
- 2. To observe and record temperature, humidity and atmospheric electric field magnitude as well as the location.
- 3. To analyse the performance of the developed device.

1.4 Scope of Study

The designed system developed by using Arduino Uno board environment and also Arduino 1.0.5 open project software. Also, additional supporting circuits are designed. Then, a laboratory test by using function generator carried out to observe the device's capability. Meanwhile to verify the performance of the input modules, field test is performed. The test covered the performance of GPS, humidity and temperature sensor. The device is enclosed in a prototype box. Only particular sensors will be positioned and shielded properly outside.

1.5 Significant of Study and Original Contribution

The development of low cost mobile data logger device technology for atmospheric field magnitude and recording are still few. It is one the great challenge to explore the new application of multiple implementation of sensors, GPS system and SD Card for multiple type of detections, which is a cost-effective and low maintenance cost for data monitor and logging system. This application will give an additional method to meteorologists and researchers as they can monitor and aware any activity during experiment. The finding can be motivating the further research on utilizing a portable mobile data logger system as a guide for multi-use system. The concept for the project is referring to the temperature, humidity, and also electric field detection of its surrounding.

1.6 Outline of Thesis

For a system to become mobile or portable, the device selection also need to be small in size, easier to carry anywhere. Idea of the project also is referred to a lot of references to get concrete understanding on what the author is doing. By doing some homework and review, it will give the author more comprehensive on the atmospheric detection field. The referred sources are from conference paper, book chapter, journal and thesis.

First of all, a rough sketch of the ideas should be planned. The ideas is transferred in term of circuit drawing. All the input and output are being combined to become as one system. Main circuit of the design is using Arduino Uno Board, consist of an Atmega32 processor. The I/O port of the PIC should be enough for the designed system. The design can be sketched using computer software such as

Proteus ISIS or Orcad Eagle. The author will use Orcad Eagle because it is userfriendly and the component package is mostly complete when designing a PCB.

The next phase is to run a pre-laboratory test. It purpose is to verify the performance of the designed system before it can run it actual test. The test include all the usage of required sensors such as on surrounding temperature, humidity and last with data logging system. When it is confirmed to be used in actual test, which is for atmospheric electric field detection, the system can be used without any problem and hurdle. This phase will be in chapter 4, result and discussion.

The important of the developed system then is concluded in the last phase of the design. The finding can be motivating the further research to develop and improve the utilizing of the system such as add more sensors to get more efficient result.

REFERENCES

- [1] G. Gasparesc, "Development of a low-cost system for temperature monitoring," 2013, pp. 340-343.
- [2] D. K. Fisher and R. Sui, "An inexpensive open-source ultrasonic sensing system for monitoring liquid levels," *Agricultural Engineering International: CIGR Journal*, vol. 15, pp. 328-334, 2013.
- [3] C. Peng, J. Yang, B. Xue, Y. Chen, X. Zhu, Y. Zhang, *et al.*, "Development of a low-power broadband seismometer-integrated data logger," *Acta Seismologica Sinica*, vol. 36, pp. 146-155, 2014.
- [4] J. Kuutti, R. E. Sepponen, and P. Saarikko, "Escalator power consumption compared to pedestrian counting data," 2013.
- [5] M. Vukovic, R. Das, and S. Kumara, "From sensing to controlling: The state of the art in ubiquitous crowdsourcing," *International Journal of Communication Networks and Distributed Systems*, vol. 11, pp. 11-25, 2013.
- [6] T. A. Lorscheiter, J. P. S. Paim, L. A. B. De Boni, and I. N. L. Silva, "Using MS-Visual Studio and Arduino to do temperature measurements," *Utilização do MS-Visual Studio e do Arduino para medições de temperatura*, vol. 8, pp. 60-66, 2011.
- [7] G. Siebert, "The impact of expected satellite availability on global positioning system (GPS) accuracy," *Satellite Systems for Mobile Communications and Navigation, 1988.*, *Fourth International Conference, London,* 178 180 17-19 Oct 1988.
- [8] C. T. Li, X. W. Han, and Y. Z. Sun, "Design of dynamic vehicle navigation terminal based on GPS/GPRS," vol. 472, ed, 2014, pp. 237-241.
- [9] S. Y. Jiang and Z. W. Wei, "GPS application in highway survey," vol. 838-841, ed, 2014, pp. 2004-2009.
- [10] C. Vincenzo Angelino, V. R. Baraniello, and L. Cicala, "High altitude UAV navigation using IMU, GPS and camera," 2013, pp. 647-654.
- [11] H. Wang and Z. Chen, "The outdoor data collection system with GPRS," vol. 846-847, ed, 2014, pp. 1098-1101.
- [12] M. Arebey, M. A. Hannan, and H. Basri, "Integrated communication for truck monitoring in solid waste collection systems," vol. 8237 LNCS, ed, 2013, pp. 70-80.
- [13] P. Parwekar, A. Gupta, and S. Arora, "Application of Sensor in Shoe," vol. 247, ed, 2014, pp. 409-416.
- [14] G. Gasparesc, "Development of a low-cost system for temperature monitoring," in 2013 36th International Conference on Telecommunications and Signal Processing, TSP 2013, Rome, 2013, pp. 340-343.
- [15] N. A. Khairi, A. B. Jambek, T. W. Boon, and U. Hashim, "Design and analysis of a wireless temperature monitoring system," in *RSM 2013: 2013 IEEE Regional Symposium on Micro and Nano Electronics*, Langkawi; Malaysia, 2013, pp. 105-108.
- [16] A. Goswami, T. Bezboruah, and K. C. Sarma, "An embedded design for automatic temperature controller," *International Journal of Advanced Engineering & Application*, vol. 1, pp. 88-93, 2011.

- [17] D. Ibrahim, "Microcontroller based temperature monitoring and control," *Elsevier Science & Technology Books*, pp. 2-61, 2002.
- [18] A. Kumar, I. P. Singh, and S. K. Sud, "Design and development of multichannel data logger for built environment," in *International MultiConference* of Engineers and Computer Scientists 2010, IMECS 2010, Kowloon; Hong Kong, 2010, pp. 993-998.
- [19] N. M. Singh and K. C. Sarma, "Design and development of low cost pc based real time temperature and humidity monitoring system," *International Journal of Electronics and Computer Science Engineering*, vol. 1, pp. 1588-1592, 2012.
- [20] S. Nur Hidayah Malek, W. Suhaimizan Wan Zaki, A. Joret, and M. Mahadi Abdul Jamil, "Design and development of wireless stethoscope with data logging function," in 2013 IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2013, Penang; Malaysia, 2013, pp. 132-135.
- [21] P. S. Ross, A. Bourke, and B. Fresia, "A multi-sensor logger for rock cores: Methodology and preliminary results from the Matagami mining camp, Canada," *Ore Geology Reviews*, vol. 53, pp. 93-111, 2013.
- [22] T. H. Khan and K. A. Wahid, "A portable wireless body sensor data logger and its application in video capsule endoscopy," *Microprocessors and Microsystems*, vol. 38, pp. 42-52, 2014.
- [23] F. Huang, Y. He, and W. Lei, "A new design of distributed and smart automatic weather station," vol. 241-244, ed, 2013, pp. 566-570.
- [24] R. Vishnu, V. A. Kumar, T. S. Sreekanth, V. N. S. Symon, S. M. Das, and G. M. Kumar, "Formation of thunderclouds in a region of high lightning incidence, inferred from AWS, ceilometer and an electric field mill," in *Lightning (APL), 2011 7th Asia-Pacific International Conference on*, 2011, pp. 135-139.
- [25] J. Lopez, E. Perez, J. Herrera, D. Aranguren, and L. Porras, "Thunderstorm warning alarms methodology using electric field mills and lightning location networks in mountainous regions," in *Lightning Protection (ICLP)*, 2012 *International Conference on*, 2012, pp. 1-6.
- [26] M. G. BATEMAN, M. F. STEWART, R. J. BLAKESLEE, S. J. PODGORNY, H. J. CHRISTIAN, D. M. MACH, et al., "A Low-Noise, Microprocessor-Controlled, Internally Digitizing Rotating-Vane Electric Field Mill for Airborne Platforms," *BATEMAN ET AL.*, p. 1245, JULY 2007.
- [27] G. Tremberger Jr, R. Armendariz, H. Takai, T. Holden, S. Austin, L. P. Johnson, *et al.*, "Applications of Arduino microcontroller in student projects in a community college," 2012.
- [28] F. Ortega-Zamorano, J. M. Jerez, J. L. Subirats, I. Molina, and L. Franco, "Smart sensor/actuator node reprogramming in changing environments using a neural network model," *Engineering Applications of Artificial Intelligence*, 2014.
- [29] A. Hanggoro, M. A. Putra, R. Reynaldo, and R. F. Sari, "Green house monitoring and controlling using Android mobile application," 2013, pp. 79-85.
- [30] D. Aloisio, N. Donato, G. Neri, M. Latino, T. Wagner, M. Tiemann, et al., "Arduino-based shield for resistive gas sensor array characterization under UV light exposure," vol. 268 LNEE, ed, 2014, pp. 411-415.

- [31] M. J. A. Khan, M. R. Imam, J. Uddin, and M. A. R. Sarkar, "Automated fire fighting system with smoke and temperature detection," 2012, pp. 232-235.
- [32] Y. H. Xiong, S. Y. Wan, Y. He, and D. Su, "Design and implementation of a prototype cloud video surveillance system," *Journal of Advanced Computational Intelligence and Intelligent Informatics*, vol. 18, pp. 40-47, 2014.
- [33] N. Sultan, "Making use of cloud computing for healthcare provision: Opportunities and challenges," *International Journal of Information Management*, vol. 34, pp. 177-184, 2014.
- [34] L. H. Xu, L. L. Yang, and R. H. Wei, "Design of a greenhouse visualization system based on cloud computing and android system," vol. 519-520, ed, 2014, pp. 1453-1458.
- [35] R. W. Fransiska, E. M. P. Septia, W. K. Vessabhu, W. Frans, W. Abednego, and Hendro, "Electrical power measurement using Arduino Uno microcontroller and LabVIEW," 2013, pp. 226-229.