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ABSTRACT 

 

 

 

 

 This study concerns with the formulation of Meshfree (MFree) for nonlinear 

geometric of composite beam with partial interaction. The Principle of Virtual Work 

was used to derive the differential equation of composite beam. Finite Element 

Method (FEM) and MFree method: Point Interpolation Method (PIM) was used to 

solve the differential equation. The derived formulation was validated with previous 

research work for linear problem and nonlinear problem. The nonlinear geometrical 

are taken into account to study the performance of Mfree handling the nonlinear 

problem and the performances are compared with FEM. The algorithms of the 

solution procedure for both methods were written in MATLAB. Parametric studies 

were conducted to study the performances in term of convergence rate and computer 

resources between FEM and PIM. The parameters considered in this study were the 

size of support domain, αs number of nodes, number of Gauss cell and number of 

Gauss point. The result of the parametric study showed that five bending nodes and 

nine axial nodes with αs equal to four give the appropriate result considering both 

accuracy and stability. The recommended value for Gauss cell was three and the 

number of Gauss point was five. Two parameters observed to study the use of 

computer resources were the computational speed and memory used to solved the 

problem. From the study, MFree has been found to have a potential as FEM yet 

another option of numerical method in solving engineering problem in general and 

composite beam problem in particular. However, further studies are required in 

improving the efficiency of the method specifically in regards to the high 

consumption of computer resources. 
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ABSTRAK 

 

 

 

 

 Kajian ini adalah mengenai formulasi Jaring Bebas (MFree) bagi analisis 

geometri bukan linear rasuk rencam dengan interaksi separa. Prinsip Kerja Maya 

telah digunakan bagi menerbitkan persamaan pembezaan rasuk rencam. Kaedah 

Unsur Terhingga (FEM) dan kaedah MFree: Kaedah interpolasi titik (PIM) telah 

digunakan untuk menyelesaikan persamaan pembezaan. Persamaan yang diterbitkan 

telah disahkan dengan dengan hasil penyelidikan yang lepas bagi masalah linear dan 

masalah bukan linear. Kesan analisis geometri bukan linear diambil kira didalam 

kajian ini adalah bagi mengkaji prestasi Mfree dalam menyelesaikan masalah bukan 

linear dan membandingkan keputusannya dengan FEM. Algoritma prosedur 

penyelesaian bagi kedua-dua kaedah telah ditulis menggunakan perisian MATLAB. 

Kajian parametrik dijalankan untuk mengkaji prestasi dalam kadar penumpuan dan 

sumber komputer antara FEM dan PIM. Parameter yang dipertimbangkan dalam 

kajian ini adalah saiz domain sokongan, αs bilangan nod, bilangan sel Gauss dan 

bilangan titik Gauss. Hasil kajian parametrik menunjukkan bahawa lima nod rasuk 

dan sembilan nod paksi dengan αs bersamaan dengan empat memberikan hasil yang 

sesuai berdasarkan ciri ketepatan dan kestabilan. Nilai yang disyorkan bagi sel Gauss 

adalah tiga dan bilangan titik Gauss adalah lima. Dua parameter diperhatikan untuk 

mengkaji penggunaan sumber komputer adalah kelajuan pengiraan dan memori yang 

digunakan bagi menyelesaikan masalah. Dari segi kelajuan, FEM lebih cepat 

berbanding Mfree manakala untuk penggunaan memori, Mfree adalah kurang 

daripada FEM. Daripada kajian, didapati Mfree mempunyai potensi sebagaimana 

FEM dan merupakan pilihan lain untuk kaedah berangka bagi menyelesaikan 

masalah kejuruteraan umumnya dan dalam masalah rasuk rencam khususnya. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 INTRODUCTION 

 

 

Composite structures especially composite beams are widely used in today’s 

construction. Composited beams are composed of two or more materials joint together to 

act as a single unit. Steel-concrete composite beams are one of the common examples of 

composite beam which often used for long-span beams in buildings and bridges. 

Concrete is strong in compression but weak in tension and steel, on the other hand better 

in tension than compression. The steel and concrete elements are tied together using 

shear connectors. Headed stud shear connectors are most commonly used as the shear 

connectors. The stud usually welded to the top flange of a steel beam to resist 

longitudinal slip and vertical separation between the concrete slab and steel beam. 

Moreover, by providing suitable shear connectors between the steel and concrete 

interface will assist in increasing the load carrying capacity of the composite beam due 

to increment of the shear resistance of interface Newmark et al. (1951).   

 

 There are many types of shear connectors and most generally divided into rigid 

and flexible shear connectors. For rigid shear connectors, the composite beam exhibits 

full interaction whilst for flexible shear connectors, the composite beams exhibit partial 
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interaction. If the shear connectors are not rigid, small longitudinal as well as interlayer 

slip occurs between the elements.  

 

 Commonly, most of the problems of composite beam with interlayer slip are 

assumed as linear. For linear analysis, when the force applied, the displacement is 

assumed linear but in reality the problems exhibit nonlinear behavior. As load increase, 

there are progressively changes of the stiffness of a structure, as a result of material 

changes, and/or geometric and contact effects. There are three common sources of 

nonlinearity; geometric nonlinearity, material nonlinearity and boundary condition 

nonlinearity. For geometric nonlinearity, the stiffness of structures is dependent on the 

displacement. The geometrical effects may be unexpected, thus the analysis may fail to 

give the real structural behavior if the effect is not taken into consideration. Material 

nonlinearity refers to nonlinear stress-strain response and often resulted by the gradual 

weakening of the structural behavior when the load is increased. For boundary condition 

nonlinearity comes from the effect of geometrical nonlinearity. For this study, only 

geometric nonlinearity is included and to be discussed, while the other two nonlinear are 

excluded. 

 

 

 

 

1.2 PROBLEM STATEMENT 

 

 

 Very frequently, the partial differential equations for engineering problems are so 

complicated that their solution in close form is either impossible or impracticable. Hence 

one has to resort seeking numerical solution. Finite Element Method (FEM) is one of the 

most general and powerful technique for the numerical solutions and widely used in 

engineering analysis. FEM have been used by other researchers like Porco et. al. (1994), 

Salari and Spacone (2001) and Silva and Sousa (2010) to solve composite beam 

problems. However, the accuracy of FEM is decrease when dealing with distorted 
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element or crack propagation problem since the FEM procedure is relies on predefined 

mesh or element. Thus the mesh refinement is needed for the problem and such 

procedures can be complex and time consuming for computer-based analysis. Since the 

Meshfree (MFree) is not relying on any predefine mesh, it seems to have the potential to 

overcome the drawback of FEM. From the literature review, the applications of MFree 

in structural engineering problems are not compressive. There are several interpolation 

techniques of MFree such as Moving Least Square (MLS), Point Interpolation Methods 

(PIM), Radial Point Interpolation Methods (RPIM) and Patition of Unity (PU) methods. 

Hence, the PIM will be used for this study in solving geometric nonlinearity of the 

composite beam problem. 

 

 

 

 

1.3 PURPOSE AND OBJECTIVES OF THE STUDY 

 

 

The purpose of this study is to use the PIM in solving geometric nonlinearity problem of 

the composite beam. The objectives of the study are listed at below: 

  

1. To formulate geometric nonlinearity problem of partial interaction of 

composite beam using PIM.  

2. To verify obtained results with exact or other numerical solution. 

3. To obtain the optimum parameters used in PIM in solving the problem. 
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1.4 SCOPE OF THE STUDY 

 

 

The PIM is employed in solving the geometric nonlinearity problem of composite beam 

with partial interaction.  

 

The assumptions and limitations of this study are listed as below: 

 

1. Materials are assumed linear elastic. 

2. Large transverse displacements, small strains and small to moderate 

rotations. 

 3.   It is assumed equal curvatures for both steel and concrete. 

 4.   The problem is analyzed as one-dimensional element. 

 5.   Concrete is assumed as uncracked. 

 

 

 

 

1.5 SIGNIFICANCE OF THE STUDY 

 

 

 MFree have been reported to have better accuracy than FEM due to the use of 

higher order polynomials for the trial functions. MFree also has an advantage over the 

FEM, because of its capability of handling deformation resulted from geometrical 

nonlinearity. The availability of MFree in solving geometric nonlinearity of composite 

beam with slip problem will provide great flexibility to numerical analysis of problems 

on composite structures. In the next chapter, several advantageous of using this method 

to solve mechanics related problem will be detailed. Although there are many 

assumptions made for the simplicity of this study, it is believed that this study will 

provide a good review for future works. 
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