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ABSTRACT 

 

 

 

 

 Hemodialysis is a technique of removing waste materials and extra fluids 

(creatinine and urea) from the blood of kidney patients. A mathematical model of an 

artificial kidney dialysis machine (dialyser) is used to analyse the clearances of waste 

materials  against  the flow rate of the blood. The mathematical model is formulated 

using the theory differential equations. The clearance of creatinine and urea versus the 

flow rate of the blood are calculated as solution to the model. The graphs of the 

solution are plotted using Maple 12 software and compared with experimental data. 

We find that the calculated clearances of creatinine and urea against the rate of blood 

flow with experimental data are much closed. 
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ABSTRAK 

 

 

 

 

Hemodialisis merupakan satu teknik untuk membuang bahan-bahan buangan 

dan cecair (creatinine and urea) yang berlebihan yang terdapat dalam darah pesakit 

buah pinggang. Satu model matematik bagi mesin dialisis buah pinggang digunakan 

untuk menganalisis ‘clearance’ bahan buangan di dalam aliran darah. Model 

matematik ini diterbitkan dengan mengguna teori persamaan pembezaan. ‘Clearance’ 

creatinine dan urea berbanding kadar aliran darah di kira sebagai penyelesaian kepada 

model matematik tersebut. Graf-graf penyelesaian tersebut dilakarkan dengan 

menggunakan perisian Maple 12 dan dibandingkan dengan data yang didapati dari 

eksperimen. Didapati ‘clearance’   bagi creatinine dan urea berbanding dengan kadar 

aliran darah dari kiraan menghampiri  dengan data eksperimen.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Research 

 

 

The kidney is a major organ in human body which excretes waste products and 

excessive fluid. Kidney’s main function is to regulate fluid and electrolyte balance to 

maintain fluid volumes and ion compositions (Stephen Baigent et. al., 2000). Without 

the kidney, toxic will be accumulated in our body and may lead to death.  

 

 

Nowadays, many people are facing chronic kidney failure problems which can 

be life threatening. When the kidney fails to function, an artificial kidney is needed to 

perform the essential tasks that have been done by the kidney (see Figure 1.1). Figure 

1.1 depicts hemodialysis where it is a process of removing excessive waste products and 

water from blood. The machine in Figure 1.1 which acts as a substitute for kidney is 

known as dialyser. For healthy individuals with healthy kidneys, the removal of fluid 

and waste products is a continuous process. When the kidney fails to perform, excessive 

fluid and toxic chemicals are retained in the body. This situation can be very dangerous. 
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Therefore, an artificial kidney known as dialyser has been used to remove excessive 

fluid and waste products in the blood (D.N Burghes, and M.S. Borrie, 1981). 

 

The process of removing excessive water and toxic from our blood using 

dialyser is called dialysis. There are two main types of dialysis, hemodialysis and 

peritoneal dialysis. The former uses external and artificial membrane to filter the waste 

products in the blood whereas the latter uses the patient’s peritoneal membrane as the 

filter (Stephen Baigent et. al., 2000). Peritoneal dialysis is a continuous process. On the 

other hand, hemodialysis is routinely done three times per week where each session can 

last from 4 to 6 hours (Stephen Baigent et. al., 2000).  

 

 

During hemodialysis, blood with concentrated toxic chemicals is taken from the 

body of the patient and passed into the dialyser. In the adjacent compartment of the 

dialyser, a cleaning fluid which is known as dialysate is being flowed in the opposite 

direction. These two compartments are being separated by a semipermeable membrane 

with minute pores which are too small for the blood cells to go through. However, these 

pores are large enough for the molecules of waste products to pass through (D.N. 

Burghes and M.S. Borrie ,1981). The waste products will flow from high to low 

concentration through the membrane, i.e. from blood to dialysate. Hence, a cleaner 

blood will flow out of the dialyser back to the patient’s body.  
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1.2 Statement of the Problem 

 

 

D.M. Burley (1975) mentioned that kidney dialysis machines are called artificial 

kidneys which are used to treat patients who have lost kidney function because of some 

disease or injury. The machine is essentially a mass transfer device that cleanses the 

patient’s blood to remove elevated levels of salts, excess fluids, and metabolic waste 

products. This removal process is necessary to control blood pressure and maintain the 

proper balance of potassium and sodium in the body.  

 

 

Figure 1.1 Hemodialysis : Combination of Diffusive and Convective Transport  

(Forni and Hilton, 1997) 
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The dialyser is a large canister that contains thousands of small membrane 

pores. During the dialysis process, the patient’s blood is passed a few ounces at a time 

through these membrane fibers, where it encounters a cleansing fluid (a chemical 

formulation called dialysate, whose composition is tailored for each patient) that helps 

to separate unwanted constituents from the blood. Once this highly specialized filtration 

process is complete, the clean blood is returned back to the body (see Figure 1.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

To gain more understanding about the process of dialysis, we need to study the 

fundamental mechanism that operates in a dialyser by constructing a simple 

mathematical model.  

Here are three related questions for my study: 

 

1) How to derive mathematical modeling of a dialyser? 

 

2) Is the governing equation can be solved theoretically? 

 

Figure 1.2  The Process of Dialysis (Ifudu, 1998) 
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3) How to calculate the amount of removed waste materials (creatinine and urea)? 

 

 

 

 

1.3 Objectives of the Study 

 

 

The main objectives of the study are 

 

  To study the process of dialysis 

 

  To formulate the mathematical model of the kidney machine 

 

  To calculate the amount of removed waste material (creatinine and urea) 

 

  To predict the amount of removed waste material (creatinine and urea) for any 

given flow rate of blood. 

 

 

 

 

1.4 Scope of the Study 

 

 

We only deal with a simple model of kidney machine where the mathematical 

model that is formulated can be solved using first order differential equations. We will 



6 

 

only restrict our scope to a model with only one compartment which is divided by a 

membrane.  

 

 

 

 

1.5 Significance of Study 

 

 

This study is expected to help engineers to design an improvised version of 

kidney dialysis machine which are highly efficient and to bring down their costs. In 

order to design a more efficient model, a simple model is needed to be analysed and 

studied thoroughly. Therefore, the model I study which represents a simple model is 

expected to enhance the creation of a more detailed model in the future. The 

mathematical model of the dialyser is important to create better and more efficient 

dialysis process. 
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