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ABSTRACT 

 

The active magnetic attitude control technique is a recognized attitude control 

option for small satellites operated in Low Earth Orbit (LEO). The purpose of this 

thesis is to control a nano-satellite that is operated in LEO so that it always pointing 

toward the Earth. Two options of control algorithms have been considered for a 

gravity-gradient satellite. The first control is a passive type, structured for the gravity-

gradient satellite (Satellite A). It relies totally on the orbited body's mass distribution 

and gravitational field. The second control is an active type, structured for the gravity-

gradient satellite employing three magnetic torquers onboard (Satellite B). The control 

is accomplished using a set of magnetic torquers that can generate a mechanical 

torque thus producing control actions when the torquers interact with the 

geomagnetic field.  The algorithm used in Satellite B is configured for controlling 

roll, pitch and yaw attitudes using a proportional-derivative (PD) controller.  Both 

control algorithms are simulated using the MATLAB®/ SIMULINK® software. The 

control algorithms were tested using a simplified geomagnetic model for a reference 

space mission. Their attitude performances were compared and it is found that both 

controls fulfil the mission requirements. However, the system in satellite B gives a 

better attitude performance. Specifically, the roll axis oscillates between -2.4° and 

3.2° while the pitch axis oscillates between -2.4° and 2.0°. Finally, the yaw axis 

swing is much controllable with an oscillation between -1.7° and 0.4°. This work 

provides us an insight when designing a real magnetic attitude control subsystem for 

nano-satellites.  

 

 

 

 

 

 



vi 
 

 
 

 

 

 

ABSTRAK 

 

Teknik aktif magnetik kawalan atitud ialah salah satu teknik pilihan yang 

diiktiraf untuk satelit kecil yang beroperasi di Low Earth Orbit ( LEO) . Tujuan 

kajian ini dijalankan adalah untuk mengawal nano-satelit yang dikendalikan di LEO 

supaya ia sentiasa mengadap ke arah Bumi. Dua pilihan algoritma kawalan telah 

dipertimbangkan untuk jenis satelit berstrukturkan kecerunan graviti. Kawalan yang 

pertama adalah jenis pasif, berstrukturkan satelit kecerunan graviti (Satelit A). Ia 

bergantung sepenuhnya pada pengagihan jisim satelit yang mengorbit dan medan 

graviti. Kawalan yang kedua adalah jenis aktif yang berstrukturkan satelit kecerunan 

graviti dengan menggunakan tiga rod pengilas magnetik (Satelit B). Kawalan ini 

dilaksanakan dengan menggunakan satu set pengilas magnetik yang boleh menjana 

kilasan mekanikal dengan menghasilkan tindakan kawalan apabila pengilas 

berinteraksi dengan medan magnet bumi. Algoritma yang digunakan dalam satelit B 

dikonfigurasikan untuk mengawal paksi oleng, anggul dan rewang dengan 

menggunakan pengawal terbitan berkadaran. Kedua-dua algoritma kawalan telah 

disimulasi menggunakan perisian MATLAB®/ SIMULINK®. Algoritma kawalan 

ini telah diuji dengan menggunakan model mudah medan magnet bumi bagi misi 

angkasa. Prestasi atitud satelit bagi pilihan ini dibandingkan dan didapati bahawa 

kedua-dua algoritma boleh memenuhi keperluan misi. Walau bagaimanapun, satelit 

B memberikan prestasi atitud yang lebih baik . Secara khusus, paksi olengnya 

berayun antara -2.4° dan 3.2° manakala paksi anggulnya berayun antara -2.4° dan 

2.0°. Akhir sekali , paksi rewangnya berayun secara terkawal antara -1.7° dan 0.4° . 

Kajian ini dapat memberikan gambaran apabila mereka bentuk sistem magnetik 

kawalan atitud untuk nano-satelit. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 General Overview 

 

Some satellite subsystems require a stable satellite to carry out its mission. For 

example radio communications will require less power if the antenna is made to 

point toward Earth and solar panels can increase power output if properly directed 

towards the Sun. Specific payloads like a camera require a stable platform on which 

the satellite has to have 3-axis control namely roll, pitch and yaw. The orientation of 

the satellite in space is called its attitude. Figure 1.1 shows a satellite with an output 

of roll, pitch and yaw attitude angles. 

 

 

 

Figure 1.1: Satellite body coordinate system 

 

In space, the satellite has to concern with the presence of natural environmental 

forces. For small satellites operated in LEO, the dominant disturbance torques are 

gravity gradient torque, magnetic torque, aerodynamics torque and solar radiation 
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torque. These torques significantly affect the orbital and attitude motions of the 

satellite by creating undesirable motions, hence counterbalance action is required in 

the form of attitude control system (ACS). Therefore ACS should have the ability to 

determine the current attitude, determine the error between the current and desired 

attitudes and apply torques to remove the error. 

 

This project intends to look into passive and active ACS based on gravity gradient 

control and magnetic attitude control respectively. Firstly mathematical models of a 

gravity gradient satellite will be determined. Subsequently this model will be 

equipped with electromagnetic based device called magnetic torques for active 

control. Performance of both designs will be tested and simulated in the presence of a 

simplified geomagnetic field model as well as disturbance torques model using 

MATLAB/SIMULINK. 

 

 

1.5 Attitude Control System (ACS) 

 

Attitude Control System (ACS) is an important subsystem in a satellite which 

functions to stabilize the satellite, orients the satellite in desired directions as well as 

sensing the orientation of the satellite relative to reference (i.e. inertial) points. Figure 

1.2 illustrates a nano-satellite named as M-Cubed designed by University of 

Michigan's Student Space Systems Fabrication Lab which is configured to align one 

of its axes with the local Earth magnetic field direction.  

 

 

Figure 1.2: A magnetic attitude control system to achieve a proper orientation for Earth-

imaging (Web 1, 2013). 
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Design of ACS varies according to mission of satellites and their attitude 

requirement. The basic types of control systems are spin, three-axis active and 

passive or gravity gradient control systems. In general, an ACS consists of four 

major functional parts: sensor, controller, actuator and satellite dynamics. The sensor 

determines satellite attitude. The controller programs the electronic signals in a 

correct sequence to the actuator which is torque producing elements that can rotate 

the satellite about its center of mass. The resulting motion or dynamics is then 

monitored by the sensor which closes the loop of ACS as shown in Figure 1.3.  

 

In this work the satellite‟s orbit is set at LEO that is a distance between 160 

kilometers and 2,000 kilometers above the Earth‟s surface. Its mission is specified to 

be a nadir pointing mission meaning one of the axes will point toward the Earth. The 

other two axes will be normal to the orbital plane and towards the satellite‟s orbital 

motion respectively. This work will specifically look into a gravity gradient 

stabilized satellite which is a passive system as well as magnetic attitude system 

which is an active system.  

 

 

 

 

 

 

 

 

Figure 1.3: General closed loop system for satellite attitude control 

 

 

1.3 Nano-Satellites 

 

Nano-satellite is applied to an artificial satellite with a mass between 1 and 10kg. 

Majority of development comes from academia, and normally they follow CubeSat 

specification. The concept of standard Nano-satellite type, 1-kg „CubeSat‟ Nano-

satellite had been introduced since 1999 with the main goal to promote a low cost 

Attitude 
Reference 

Current 
Attitude  

External Disturbances  

+ 

- + 
Controller 

Sensor 

Satellite 

Dynamics 
Actuator 
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platform for space development and serve as educational tool for university student 

to design and develop a fully working satellite. The standard 10×10×10 cm basic 

CubeSat is often called a "1U" CubeSat meaning one unit. CubeSats 

are scalable along only one axis, by 1U increments. Hence they are CubeSats as "2U" 

CubeSat (20 × 10 × 10 cm) and "3U" CubeSat (30 × 10 × 10 cm). Figure 1.4 shows 

four different types of CubeSats. 

 

Constraints on the technical capacity of the people that are involved, cost limitation 

as well as lack of size mean restraint in complexity of the design, weight and energy 

resource that a nano-satellite can carry to name a few. Therefore requirements of the 

systems on board together with payloads that can be carried are preferably low cost, 

low energy with simple hardware requirement. Accordingly requirement for attitude 

control is moderate. ACS using gravity gradient and magnetic attitude control 

methods are some of the techniques that are popular and highly used whether alone 

or with a combination with other actuators.  

 

 

Figure 1.4: CubeSats order from left to right: 1U, 1.5U, 2U, and 3U. (Web 2, 2013) 

 

 

1.4 Problem Statement 

 

The emergence of nano-satellites has greatly increased the interest in attitude control 

system research and development among educational institutions. Among these are 
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systems that have combination of actuators such as momentum wheel and 

magnetorquers together which could improve the angular orientation of the satellite 

as shown by Candini et al. (2012) and Dechao et al. (2013). However, high failure rate 

of nano-satellites when they are in orbit, show precautions are required for usage of a 

system that require high processing on the CPU (Web 3, 2013). Therefore applying a 

moderate system that has been applied and proven successful in previously launched 

micro-satellites could increase the probability of having successful mission.  The 

problem considered in this thesis consists of stabilizing the attitude of a nadir 

pointing nano-satellite in LEO through usage of a passive gravity gradient 

stabilization or affiliated with magnetic stabilization using magnetic torques. The 

techniques need to consider a variety of disturbances that is anticipated in the orbit 

and exploit them in satellite dynamics model. 

 

 

1.5 Objectives of Project 

 

The objectives of this project are as follows:  

(i) To model a simplified geomagnetic model 

(ii) To establish the mathematical models of a gravity gradient satellite equipped 

with three magnetic torquers 

(iii) To control the attitude of the satellite in the presence of the disturbances by 

using the magnetic torques 

(iv) To compare the performance of both the passive and active ACS design 

which are based on purely gravity gradient and magnetic control respectively 

 

 

1.6 Scope of Project 

 

The work undertaken in this project is limited to the following aspects: 

(i) Only nano-satellites are considered 

(ii) Satellite‟s mission: Earth pointing small satellite at Low Earth Orbit (LEO) 

(iii) A gravity gradient satellite equipped with three magnetic torquers as 

actuators 
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(iv) Simulation work using MATLAB/SIMULINK as a platform to evaluate the 

attitude control algorithms 

 

 

1.7 Methodology 

 

The research work undertaken in the following five development stages:  

(i) Literature review. 

(ii) Mathematical model of a simplified geomagnetic field.  

(iii) Establish mathematical models of a gravity gradient satellite with three 

magnetic torques as actuators in active system.  

(iv) Consider in orbit external disturbances.  

(v) Perform simulation using MATLAB/SIMULINK.  

(vi) Comparative study and future work.  

 

 

1.8 Thesis Outline 

 

The rest of this thesis contains another five chapters. Chapter 2 reviews literatures 

related to this work. The focus is on the gravity gradient technique and magnitude 

attitude control technique. Chapter 3 briefly describes theories used in modeling a 

simplified geomagnetic field, satellite‟s kinematics and dynamics and external 

disturbance torques.  

 

Chapter 4 describes the development of the simplified geomagnetic field. It is 

followed by the modeling for dynamic equations of motion of the defined nano-

satellite and external disturbances.  Chapter 5 shows results of simulations using 

MATLAB/SIMULINK which have been obtained. Finally Chapter 6 concludes the 

work that has been done so far and discusses possible future works. 
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